Home Backend Development C++ How to use the longest increasing subsequence algorithm in C++

How to use the longest increasing subsequence algorithm in C++

Sep 19, 2023 pm 05:21 PM
c++ algorithm longest increasing subsequence

How to use the longest increasing subsequence algorithm in C++

How to use the Longest Increasing Subsequence algorithm in C requires specific code examples

The Longest Increasing Subsequence (LIS) is a classic Algorithmic problems, the solution ideas can be applied to many fields, such as data processing, graph theory, etc. In this article, I will introduce how to use the longest increasing subsequence algorithm in C and provide specific code examples.

First, let’s understand the definition of the longest increasing subsequence. Given a sequence a1, a2, …, an, we need to find a longest subsequence b1, b2, …, bm, in which the relative order of the elements of b in the original sequence is increasing. That is to say, for any i ai is satisfied, then bj > bi also exists in b. The length of the longest increasing subsequence is m.

Next, we will introduce two common algorithms for solving the longest increasing subsequence: dynamic programming algorithm and greedy algorithm.

  1. Dynamic programming algorithm

The dynamic programming algorithm divides the solution process of the longest increasing subsequence into multiple stages and stores the results in a two-dimensional array dp . dp[i] represents the length of the longest increasing subsequence ending with the i-th element in the sequence.

The specific solution process is as follows:

  • Initialize all elements of the dp array to 1, which means that the length of the subsequence ending with each element is at least 1.
  • Traverse the entire sequence from left to right, and for each position i, calculate the value of dp[i].
  • For each position i, traverse its previous position j. If aj

The final result is the maximum value in the dp array.

The following is a code example using C to implement the dynamic programming algorithm:

#include<iostream>
#include<vector>
using namespace std;

int longestIncreasingSubsequence(vector<int>& nums) {
  int n = nums.size();
  vector<int> dp(n, 1);

  for (int i = 1; i < n; i++) {
    for (int j = 0; j < i; j++) {
      if (nums[j] < nums[i]) {
        dp[i] = max(dp[i], dp[j]+1);
      }
    }
  }

  int res = 0;
  for (int i = 0; i < n; i++) {
    res = max(res, dp[i]);
  }

  return res;
}

int main() {
  vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18};
  int res = longestIncreasingSubsequence(nums);
  cout << "最长递增子序列的长度为:" << res << endl;
  return 0;
}
Copy after login
  1. Greedy algorithm

The greedy algorithm is a more efficient way to solve the longest problem Methods for Increasing Subsequence Problems. This algorithm uses an auxiliary array d to save the last element of the current longest increasing subsequence. Traverse the entire sequence, and for each element, use binary search to determine its position in the auxiliary array d.

The specific solution process is as follows:

  • Initialize the auxiliary array d as an empty array.
  • Traverse the entire sequence from left to right, for each element a, if a is greater than the end element of d, add a to the end of d.
  • If a is less than or equal to the last element of d, use binary search to find the first element in d that is greater than or equal to a, and replace it with a.

The final result is the length of the auxiliary array d.

The following is a code example for implementing the greedy algorithm in C:

#include<iostream>
#include<vector>
using namespace std;

int longestIncreasingSubsequence(vector<int>& nums) {
  vector<int> d;

  for (auto num : nums) {
    int left = 0, right = d.size() - 1;
    while (left <= right) {
      int mid = left + (right - left) / 2;
      if (d[mid] < num) {
        left = mid + 1;
      } else {
        right = mid - 1;
      }
    }
    if (left >= d.size()) {
      d.push_back(num);
    } else {
      d[left] = num;
    }
  }

  return d.size();
}

int main() {
  vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18};
  int res = longestIncreasingSubsequence(nums);
  cout << "最长递增子序列的长度为:" << res << endl;
  return 0;
}
Copy after login

The above is an introduction and code example of how to use the longest increasing subsequence algorithm in C. Whether it is a dynamic programming algorithm or a greedy algorithm, it can solve the longest increasing subsequence problem with a time complexity of O(n^2) or O(nlogn). Readers can choose the appropriate algorithm to use based on specific application scenarios. I hope this article can help everyone understand the longest increasing subsequence algorithm.

The above is the detailed content of How to use the longest increasing subsequence algorithm in C++. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1268
29
C# Tutorial
1243
24
C# vs. C  : History, Evolution, and Future Prospects C# vs. C : History, Evolution, and Future Prospects Apr 19, 2025 am 12:07 AM

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Where to write code in vscode Where to write code in vscode Apr 15, 2025 pm 09:54 PM

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Golang vs. C  : Performance and Speed Comparison Golang vs. C : Performance and Speed Comparison Apr 21, 2025 am 12:13 AM

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Golang and C  : The Trade-offs in Performance Golang and C : The Trade-offs in Performance Apr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

The Performance Race: Golang vs. C The Performance Race: Golang vs. C Apr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

How to execute code with vscode How to execute code with vscode Apr 15, 2025 pm 09:51 PM

Executing code in VS Code only takes six steps: 1. Open the project; 2. Create and write the code file; 3. Open the terminal; 4. Navigate to the project directory; 5. Execute the code with the appropriate commands; 6. View the output.

See all articles