How to use radix sort algorithm in C++
How to use the radix sorting algorithm in C
The radix sorting algorithm is a non-comparative sorting algorithm that divides the elements to be sorted into a finite set of digits to complete the sorting. In C, we can use the radix sort algorithm to sort a set of integers. Below we will discuss in detail how to implement the radix sort algorithm, with specific code examples.
- Algorithm idea
The idea of the radix sorting algorithm is to divide the elements to be sorted into a limited set of digital bits, and then sort the elements on each bit in turn. After the sorting on each bit is completed, the elements are reorganized according to the order of that bit, and then the sorting of the next bit is continued until all bits are sorted. - Specific implementation steps
(1) First, we need to determine the number of digits in the maximum value among all elements to be sorted. This will determine how many rounds of sorting we need to do.
(2) Then, we need to create an auxiliary array and a count array. The auxiliary array is used to store temporary results during the sorting process, and the counting array is used to record the number of occurrences of each number.
(3) Next, we need to perform multiple rounds of sorting. Each round of sorting reorganizes the array according to the current bit size.
(4) In each round of sorting, we need to traverse the array to be sorted, use the current bit value of each element as an index, and put the elements into the corresponding bucket.
(5) Then, we need to count the number of elements in each bucket, which can be recorded using a counting array.
(6) Next, we need to determine the position of the elements in each bucket in the auxiliary array by counting the array. This can be determined by counting the prefix sum of elements in the array.
(7) Finally, we overwrite the elements in the auxiliary array into the array to be sorted to complete a round of sorting.
(8) Repeat steps (3) to (7) until all bits are sorted.
- Code example
The following is a code example that uses C to implement the radix sorting algorithm:
#include <iostream> #include <vector> using namespace std; void radixSort(vector<int>& arr) { int maxVal = *max_element(arr.begin(), arr.end()); int digit = 1; vector<int> temp(arr.size()); while (maxVal / digit > 0) { vector<int> count(10, 0); for (int i = 0; i < arr.size(); i++) { count[(arr[i] / digit) % 10]++; } for (int i = 1; i < 10; i++) { count[i] += count[i - 1]; } for (int i = arr.size() - 1; i >= 0; i--) { temp[count[(arr[i] / digit) % 10] - 1] = arr[i]; count[(arr[i] / digit) % 10]--; } for (int i = 0; i < arr.size(); i++) { arr[i] = temp[i]; } digit *= 10; } } int main() { vector<int> arr = { 170, 45, 75, 90, 802, 24, 2, 66 }; radixSort(arr); cout << "排序结果:"; for (int i = 0; i < arr.size(); i++) { cout << arr[i] << " "; } cout << endl; return 0; }
In the above example code, we first find the array to be sorted The maximum value to determine how many rounds of sorting are required. Then we created an auxiliary array and a count array. Next, we perform multiple rounds of sorting to reassemble the array according to the current bit size. Finally, we output the sorted results.
Summary:
Through the radix sorting algorithm, we can sort a set of integers in C. The core idea of the radix sorting algorithm is to divide the elements to be sorted into a limited set of numerical bits, and then sort the elements on each bit in turn. This non-comparative sorting algorithm can effectively handle the sorting problem of a set of integers.
The above is the detailed content of How to use radix sort algorithm in C++. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Writing C in VS Code is not only feasible, but also efficient and elegant. The key is to install the excellent C/C extension, which provides functions such as code completion, syntax highlighting, and debugging. VS Code's debugging capabilities help you quickly locate bugs, while printf output is an old-fashioned but effective debugging method. In addition, when dynamic memory allocation, the return value should be checked and memory freed to prevent memory leaks, and debugging these issues is convenient in VS Code. Although VS Code cannot directly help with performance optimization, it provides a good development environment for easy analysis of code performance. Good programming habits, readability and maintainability are also crucial. Anyway, VS Code is

Visual Studio Code (VSCode) is a cross-platform, open source and free code editor developed by Microsoft. It is known for its lightweight, scalability and support for a wide range of programming languages. To install VSCode, please visit the official website to download and run the installer. When using VSCode, you can create new projects, edit code, debug code, navigate projects, expand VSCode, and manage settings. VSCode is available for Windows, macOS, and Linux, supports multiple programming languages and provides various extensions through Marketplace. Its advantages include lightweight, scalability, extensive language support, rich features and version
