Home Technology peripherals AI Haomo DriveGPT is the 'king of volumes' of large models! Focusing on 'cost reduction, efficiency increase, veteran driver'

Haomo DriveGPT is the 'king of volumes' of large models! Focusing on 'cost reduction, efficiency increase, veteran driver'

Sep 17, 2023 am 09:01 AM
industry

The 2023 China International Fair for Trade in Services, with the theme of "Openness Leads Development, Cooperation Wins a Future", concluded successfully on September 6. At this Service Trade Fair, a group of leading companies that have been engaged in artificial intelligence, autonomous driving, satellite remote sensing and other fields for many years demonstrated their latest scientific and technological achievements and demonstrated their steps towards the future

domestic He Xiang, a data intelligence scientist at the self-driving unicorn company Hao Mo Zhixing, gave a keynote speech on "Bei Mo DriveGPT Xuehu·Hairuo, accelerating the advent of the self-driving 3.0 era" and accepted interviews with the media after the meeting. The research and application exploration of autonomous driving technology in the model era has brought us a comprehensive interpretation

Haomo DriveGPT is the king of volumes of large models! Focusing on cost reduction, efficiency increase, veteran driver

Image description: He Xiang (right), a data intelligence scientist at HaoMo Zhixing, is being interviewed by the media

The following is the record of the interview:

Host: Mr. He, can you introduce to us what kind of results and displays Haomo Zhixing will bring to us in this year’s trade in services?

He Xiang said that one of our most important achievements this year is the industry's first self-driving generative model DriveGPT released by Hao Mo Zhixing in April

Moderator: DriveGPT? Sounds like it has something to do with driving?

He Xiang: Yes, this is a large AI model used to solve problems related to the field of autonomous driving. We call it the autonomous driving generative pre-training large model DriveGPT

Moderator: Generative pre-training? How do we understand pre-training?

He Xiang said: The technical details of the large model are that it must first use massive driver driving behavior data to conduct pre-training in the cloud. Pre-training is to train the model first. After training, a prototype of the model is obtained, and then the driver's takeover data is introduced. The so-called takeover data means that every time when autonomous driving is turned on, if the autonomous driving decision is not good enough, the driver will take over, such as stepping on the brakes or holding the steering wheel. This takeover data amounts to corrections to our autonomous driving decisions. After obtaining this data, the model can be continuously corrected to make the model's driving effect better and better. This is a process of constant error correction and constant iteration to achieve better autonomous driving effects

Host: It can be said to be an upgrade to our traditional autonomous driving. The rewritten content is as follows: Host: It can be said that this is an upgrade to our traditional autonomous driving. He Xiang: Yes, it can be said to be a technological change. We can make a simple comparison. The development model of traditional autonomous driving technology is that when autonomous driving finds a problem, it will usually find data related to this problem from massive data. The cost is very high. of. Because it is not that easy to find the data you want in the massive data. After finding this data, the next thing to do is to give this pile of data to the annotation company, and manually annotate the problems in it. After the annotation is completed, use this data to train a small model. This model After training, put it in the car. At this point, this car has the ability to solve this problem. We call this model small data and small model, and it is "problem-driven".

Under the large model model of DriveGPT, the entire development model is different. With the support of DriveGPT, the current development model is to first use massive data, veteran driver data, and driving behavior to conduct pre-training to obtain a preliminary model, which has the ability to drive. When we discover a problem during autonomous driving, the driver will take over. This takeover is equivalent to correcting the driving decision. Based on this corrected data, the data is then sent back to correct the original pre-trained large model. After such a data closed loop is established, the effect of this model will continue to evolve and improve every day. We call this development model big data and big model, and it is "data-driven". This is a transformational improvement.

Moderator: We can observe that the current level of autonomous driving technology is approximately L2 level, and now most vehicles have reached L2.5 level

He Xiang: L2, we call it high Level assisted driving.

Moderator: With the support of the large model DriveGPT, what level can we achieve?

He Xiang: It should still be in the high-level assisted driving stage. Our large model mainly generates two business values.

The first business value is in the entire cloud. The traditional autonomous driving development model needs to be migrated to the cloud, which will bring very high costs and require a lot of data screening, especially manual participation and a lot of manual annotation. However, with large models, the entire data screening, annotation and data generation can be fully automated, which is very effective in reducing costs

For example, in the field of annotation, autonomous driving companies must have spent hundreds of millions of yuan on annotation every year. With DriveGPT, images or videos can be automatically annotated. If you do video annotation or 4D Clips Labeling can probably reduce costs by 98%. Even if only a single image is annotated, the cost can be reduced by 90%. The cost of cloud can be greatly reduced.

The second business value is on the car side, and the effect can be greatly improved. The model is trained based on massive data. Massive data means that our model has seen a lot of data. It has seen all kinds of scenarios. The more it is informed, the stronger its ability will be. This ability is called the generalization ability of the model or AI. With generalization capabilities, the effect of autonomous driving will be better.

In addition, the entire model is trained based on the driving behavior data of "old drivers". It is very high-quality data. Its overall driving effect or driving experience will be closer to that of "old drivers". Users will feel that the driving experience will be better during use.

Third point, our large model has a special ability to output the reasons for driving decisions. For example, when a driving decision is made such as "press the brakes" or "turn the steering wheel," our model can explain why that action was taken. If such an explanation can be provided, a good trust relationship can be established between intelligent driving vehicles and users, and users will be more assured when using autonomous driving products

Through continuous iteration based on large-scale models and data closed loops , the current advanced assisted driving still requires the driver to take over at any time. In the future, we hope to gradually realize true driverless driving through continuous iterative upgrades

Host: From this perspective, it not only reduces costs but also improves efficiency

He Xiang said: " There is no need for drivers to try and make mistakes again and again. Big data can help solve this problem. It can collect the takeover behaviors of all drivers and solve all problems at once. In this way, the driving effect will be improved very quickly."

The above is the detailed content of Haomo DriveGPT is the 'king of volumes' of large models! Focusing on 'cost reduction, efficiency increase, veteran driver'. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners Aug 09, 2024 pm 04:01 PM

But maybe he can’t defeat the old man in the park? The Paris Olympic Games are in full swing, and table tennis has attracted much attention. At the same time, robots have also made new breakthroughs in playing table tennis. Just now, DeepMind proposed the first learning robot agent that can reach the level of human amateur players in competitive table tennis. Paper address: https://arxiv.org/pdf/2408.03906 How good is the DeepMind robot at playing table tennis? Probably on par with human amateur players: both forehand and backhand: the opponent uses a variety of playing styles, and the robot can also withstand: receiving serves with different spins: However, the intensity of the game does not seem to be as intense as the old man in the park. For robots, table tennis

The first mechanical claw! Yuanluobao appeared at the 2024 World Robot Conference and released the first chess robot that can enter the home The first mechanical claw! Yuanluobao appeared at the 2024 World Robot Conference and released the first chess robot that can enter the home Aug 21, 2024 pm 07:33 PM

On August 21, the 2024 World Robot Conference was grandly held in Beijing. SenseTime's home robot brand "Yuanluobot SenseRobot" has unveiled its entire family of products, and recently released the Yuanluobot AI chess-playing robot - Chess Professional Edition (hereinafter referred to as "Yuanluobot SenseRobot"), becoming the world's first A chess robot for the home. As the third chess-playing robot product of Yuanluobo, the new Guoxiang robot has undergone a large number of special technical upgrades and innovations in AI and engineering machinery. For the first time, it has realized the ability to pick up three-dimensional chess pieces through mechanical claws on a home robot, and perform human-machine Functions such as chess playing, everyone playing chess, notation review, etc.

Claude has become lazy too! Netizen: Learn to give yourself a holiday Claude has become lazy too! Netizen: Learn to give yourself a holiday Sep 02, 2024 pm 01:56 PM

The start of school is about to begin, and it’s not just the students who are about to start the new semester who should take care of themselves, but also the large AI models. Some time ago, Reddit was filled with netizens complaining that Claude was getting lazy. "Its level has dropped a lot, it often pauses, and even the output becomes very short. In the first week of release, it could translate a full 4-page document at once, but now it can't even output half a page!" https:// www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ in a post titled "Totally disappointed with Claude", full of

At the World Robot Conference, this domestic robot carrying 'the hope of future elderly care' was surrounded At the World Robot Conference, this domestic robot carrying 'the hope of future elderly care' was surrounded Aug 22, 2024 pm 10:35 PM

At the World Robot Conference being held in Beijing, the display of humanoid robots has become the absolute focus of the scene. At the Stardust Intelligent booth, the AI ​​robot assistant S1 performed three major performances of dulcimer, martial arts, and calligraphy in one exhibition area, capable of both literary and martial arts. , attracted a large number of professional audiences and media. The elegant playing on the elastic strings allows the S1 to demonstrate fine operation and absolute control with speed, strength and precision. CCTV News conducted a special report on the imitation learning and intelligent control behind "Calligraphy". Company founder Lai Jie explained that behind the silky movements, the hardware side pursues the best force control and the most human-like body indicators (speed, load) etc.), but on the AI ​​side, the real movement data of people is collected, allowing the robot to become stronger when it encounters a strong situation and learn to evolve quickly. And agile

ACL 2024 Awards Announced: One of the Best Papers on Oracle Deciphering by HuaTech, GloVe Time Test Award ACL 2024 Awards Announced: One of the Best Papers on Oracle Deciphering by HuaTech, GloVe Time Test Award Aug 15, 2024 pm 04:37 PM

At this ACL conference, contributors have gained a lot. The six-day ACL2024 is being held in Bangkok, Thailand. ACL is the top international conference in the field of computational linguistics and natural language processing. It is organized by the International Association for Computational Linguistics and is held annually. ACL has always ranked first in academic influence in the field of NLP, and it is also a CCF-A recommended conference. This year's ACL conference is the 62nd and has received more than 400 cutting-edge works in the field of NLP. Yesterday afternoon, the conference announced the best paper and other awards. This time, there are 7 Best Paper Awards (two unpublished), 1 Best Theme Paper Award, and 35 Outstanding Paper Awards. The conference also awarded 3 Resource Paper Awards (ResourceAward) and Social Impact Award (

Hongmeng Smart Travel S9 and full-scenario new product launch conference, a number of blockbuster new products were released together Hongmeng Smart Travel S9 and full-scenario new product launch conference, a number of blockbuster new products were released together Aug 08, 2024 am 07:02 AM

This afternoon, Hongmeng Zhixing officially welcomed new brands and new cars. On August 6, Huawei held the Hongmeng Smart Xingxing S9 and Huawei full-scenario new product launch conference, bringing the panoramic smart flagship sedan Xiangjie S9, the new M7Pro and Huawei novaFlip, MatePad Pro 12.2 inches, the new MatePad Air, Huawei Bisheng With many new all-scenario smart products including the laser printer X1 series, FreeBuds6i, WATCHFIT3 and smart screen S5Pro, from smart travel, smart office to smart wear, Huawei continues to build a full-scenario smart ecosystem to bring consumers a smart experience of the Internet of Everything. Hongmeng Zhixing: In-depth empowerment to promote the upgrading of the smart car industry Huawei joins hands with Chinese automotive industry partners to provide

Li Feifei's team proposed ReKep to give robots spatial intelligence and integrate GPT-4o Li Feifei's team proposed ReKep to give robots spatial intelligence and integrate GPT-4o Sep 03, 2024 pm 05:18 PM

Deep integration of vision and robot learning. When two robot hands work together smoothly to fold clothes, pour tea, and pack shoes, coupled with the 1X humanoid robot NEO that has been making headlines recently, you may have a feeling: we seem to be entering the age of robots. In fact, these silky movements are the product of advanced robotic technology + exquisite frame design + multi-modal large models. We know that useful robots often require complex and exquisite interactions with the environment, and the environment can be represented as constraints in the spatial and temporal domains. For example, if you want a robot to pour tea, the robot first needs to grasp the handle of the teapot and keep it upright without spilling the tea, then move it smoothly until the mouth of the pot is aligned with the mouth of the cup, and then tilt the teapot at a certain angle. . this

Distributed Artificial Intelligence Conference DAI 2024 Call for Papers: Agent Day, Richard Sutton, the father of reinforcement learning, will attend! Yan Shuicheng, Sergey Levine and DeepMind scientists will give keynote speeches Distributed Artificial Intelligence Conference DAI 2024 Call for Papers: Agent Day, Richard Sutton, the father of reinforcement learning, will attend! Yan Shuicheng, Sergey Levine and DeepMind scientists will give keynote speeches Aug 22, 2024 pm 08:02 PM

Conference Introduction With the rapid development of science and technology, artificial intelligence has become an important force in promoting social progress. In this era, we are fortunate to witness and participate in the innovation and application of Distributed Artificial Intelligence (DAI). Distributed artificial intelligence is an important branch of the field of artificial intelligence, which has attracted more and more attention in recent years. Agents based on large language models (LLM) have suddenly emerged. By combining the powerful language understanding and generation capabilities of large models, they have shown great potential in natural language interaction, knowledge reasoning, task planning, etc. AIAgent is taking over the big language model and has become a hot topic in the current AI circle. Au

See all articles