Table of Contents
Qualitative results
Home Technology peripherals AI More granular background and foreground control, faster editing: BEVControl's two-stage approach

More granular background and foreground control, faster editing: BEVControl's two-stage approach

Sep 07, 2023 pm 11:21 PM
theory scene generation bevcontrol

This article will introduce a method to accurately generate multi-view street view images through BEV Sketch layout

More granular background and foreground control, faster editing: BEVControls two-stage approach

In the field of autonomous driving, image synthesis is widely used to improve downstream perception Task performance

In the field of computer vision, a long-standing research problem in improving the performance of perceptual models is to achieve it by synthesizing images. In vision-centric autonomous driving systems, using multi-view cameras, this problem becomes more prominent because some long-tail scenes can never be collected.

More granular background and foreground control, faster editing: BEVControls two-stage approach

According to As shown in Figure 1(a), the existing generation method inputs the semantic segmentation-style BEV structure into the generation network and outputs reasonable multi-view images. When evaluated solely on scene-level metrics, existing methods appear to be capable of synthesizing photorealistic street view images. Once zoomed in, however, we found that it failed to produce accurate object-level detail. In the figure, we demonstrate a common mistake of state-of-the-art generation algorithms, which is that the generated vehicle is completely oriented in the opposite direction compared to the target 3D bounding box. Furthermore, editing semantic segmentation-style BEV structures is a difficult task that requires a lot of manpower. Therefore, we propose a two-stage method called BEVControl for providing more refined background and foreground geometries. control, as shown in Figure 1(b). BEVControl supports sketch-style BEV structure input, allowing for quick and easy editing. Additionally, our BEVControl decomposes visual consistency into two sub-goals: geometric consistency between street views and bird's-eye views via the Controller; appearance consistency between street views via the Coordinator

##Paper link: More granular background and foreground control, faster editing: BEVControls two-stage approach

https://www.php.cn/link/1531beb762df4029513ebf9295e0d34f

Method Framework

More granular background and foreground control, faster editing: BEVControls two-stage approachBEVControl is a generated network of UNet structure, consisting of a series of modules. Each module has two elements, namely Controller and Coordinator.

    Input: BEV sketch, multi-view noise image and text prompt for easy editing;
  • Output: generated multi-view image.
  • Method details

More granular background and foreground control, faster editing: BEVControls two-stage approach Camera projection process of BEV sketch to camera condition. Input is a BEV sketch. The output is multi-view foreground conditions and background conditions.

More granular background and foreground control, faster editing: BEVControls two-stage approachController: Receives the foreground and background information of the camera view sketch in a self-attentional manner, and outputs geometric consistency with the BEV sketch Streetscape features.

    Coordinator: Utilizes a novel cross-view and cross-element attention mechanism to achieve cross-view contextual interaction and output street view features with appearance consistency.
  • Proposed evaluation metrics

Recent street view image generation work only evaluates generation based on scene-level metrics (such as FID, road mIoU, etc.) quality.

    We found that it is impossible to evaluate the true generative ability of the generative network using only these metrics, as shown in the figure below. The reported qualitative and quantitative results show that both groups generate Street View images with similar FID scores but very different capabilities for fine-grained control over the foreground and background.
  • Therefore, we propose a set of evaluation indicators for finely measuring the control capabilities of the generated network.

More granular background and foreground control, faster editing: BEVControls two-stage approachQuantitative results

Comparison of BEVControl and state-of-the-art methods on the proposed evaluation indicators.

  • Apply BEVControl for data enhancement to improve target detection tasks. More granular background and foreground control, faster editing: BEVControls two-stage approach

Qualitative results

  • Comparison of BEVControl and state-of-the-art methods on the NuScenes validation set.

More granular background and foreground control, faster editing: BEVControls two-stage approach

More granular background and foreground control, faster editing: BEVControls two-stage approach

##Demo effect

More granular background and foreground control, faster editing: BEVControls two-stage approach

More granular background and foreground control, faster editing: BEVControls two-stage approach

The content that needs to be rewritten is: Reference

The content that needs to be rewritten is: [1] Swerdlow A, Xu R, Zhou B. Generating street view images from a bird's-eye view layout[ J]. arXiv preprint arXiv:2301.04634, 2023.

The above is the detailed content of More granular background and foreground control, faster editing: BEVControl's two-stage approach. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Breaking through the boundaries of traditional defect detection, 'Defect Spectrum' achieves ultra-high-precision and rich semantic industrial defect detection for the first time. Breaking through the boundaries of traditional defect detection, 'Defect Spectrum' achieves ultra-high-precision and rich semantic industrial defect detection for the first time. Jul 26, 2024 pm 05:38 PM

In modern manufacturing, accurate defect detection is not only the key to ensuring product quality, but also the core of improving production efficiency. However, existing defect detection datasets often lack the accuracy and semantic richness required for practical applications, resulting in models unable to identify specific defect categories or locations. In order to solve this problem, a top research team composed of Hong Kong University of Science and Technology Guangzhou and Simou Technology innovatively developed the "DefectSpectrum" data set, which provides detailed and semantically rich large-scale annotation of industrial defects. As shown in Table 1, compared with other industrial data sets, the "DefectSpectrum" data set provides the most defect annotations (5438 defect samples) and the most detailed defect classification (125 defect categories

NVIDIA dialogue model ChatQA has evolved to version 2.0, with the context length mentioned at 128K NVIDIA dialogue model ChatQA has evolved to version 2.0, with the context length mentioned at 128K Jul 26, 2024 am 08:40 AM

The open LLM community is an era when a hundred flowers bloom and compete. You can see Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 and many other excellent performers. Model. However, compared with proprietary large models represented by GPT-4-Turbo, open models still have significant gaps in many fields. In addition to general models, some open models that specialize in key areas have been developed, such as DeepSeek-Coder-V2 for programming and mathematics, and InternVL for visual-language tasks.

Training with millions of crystal data to solve the crystallographic phase problem, the deep learning method PhAI is published in Science Training with millions of crystal data to solve the crystallographic phase problem, the deep learning method PhAI is published in Science Aug 08, 2024 pm 09:22 PM

Editor |KX To this day, the structural detail and precision determined by crystallography, from simple metals to large membrane proteins, are unmatched by any other method. However, the biggest challenge, the so-called phase problem, remains retrieving phase information from experimentally determined amplitudes. Researchers at the University of Copenhagen in Denmark have developed a deep learning method called PhAI to solve crystal phase problems. A deep learning neural network trained using millions of artificial crystal structures and their corresponding synthetic diffraction data can generate accurate electron density maps. The study shows that this deep learning-based ab initio structural solution method can solve the phase problem at a resolution of only 2 Angstroms, which is equivalent to only 10% to 20% of the data available at atomic resolution, while traditional ab initio Calculation

Google AI won the IMO Mathematical Olympiad silver medal, the mathematical reasoning model AlphaProof was launched, and reinforcement learning is so back Google AI won the IMO Mathematical Olympiad silver medal, the mathematical reasoning model AlphaProof was launched, and reinforcement learning is so back Jul 26, 2024 pm 02:40 PM

For AI, Mathematical Olympiad is no longer a problem. On Thursday, Google DeepMind's artificial intelligence completed a feat: using AI to solve the real question of this year's International Mathematical Olympiad IMO, and it was just one step away from winning the gold medal. The IMO competition that just ended last week had six questions involving algebra, combinatorics, geometry and number theory. The hybrid AI system proposed by Google got four questions right and scored 28 points, reaching the silver medal level. Earlier this month, UCLA tenured professor Terence Tao had just promoted the AI ​​Mathematical Olympiad (AIMO Progress Award) with a million-dollar prize. Unexpectedly, the level of AI problem solving had improved to this level before July. Do the questions simultaneously on IMO. The most difficult thing to do correctly is IMO, which has the longest history, the largest scale, and the most negative

PRO | Why are large models based on MoE more worthy of attention? PRO | Why are large models based on MoE more worthy of attention? Aug 07, 2024 pm 07:08 PM

In 2023, almost every field of AI is evolving at an unprecedented speed. At the same time, AI is constantly pushing the technological boundaries of key tracks such as embodied intelligence and autonomous driving. Under the multi-modal trend, will the situation of Transformer as the mainstream architecture of AI large models be shaken? Why has exploring large models based on MoE (Mixed of Experts) architecture become a new trend in the industry? Can Large Vision Models (LVM) become a new breakthrough in general vision? ...From the 2023 PRO member newsletter of this site released in the past six months, we have selected 10 special interpretations that provide in-depth analysis of technological trends and industrial changes in the above fields to help you achieve your goals in the new year. be prepared. This interpretation comes from Week50 2023

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

Nature's point of view: The testing of artificial intelligence in medicine is in chaos. What should be done? Nature's point of view: The testing of artificial intelligence in medicine is in chaos. What should be done? Aug 22, 2024 pm 04:37 PM

Editor | ScienceAI Based on limited clinical data, hundreds of medical algorithms have been approved. Scientists are debating who should test the tools and how best to do so. Devin Singh witnessed a pediatric patient in the emergency room suffer cardiac arrest while waiting for treatment for a long time, which prompted him to explore the application of AI to shorten wait times. Using triage data from SickKids emergency rooms, Singh and colleagues built a series of AI models that provide potential diagnoses and recommend tests. One study showed that these models can speed up doctor visits by 22.3%, speeding up the processing of results by nearly 3 hours per patient requiring a medical test. However, the success of artificial intelligence algorithms in research only verifies this

The accuracy rate reaches 60.8%. Zhejiang University's chemical retrosynthesis prediction model based on Transformer was published in the Nature sub-journal The accuracy rate reaches 60.8%. Zhejiang University's chemical retrosynthesis prediction model based on Transformer was published in the Nature sub-journal Aug 06, 2024 pm 07:34 PM

Editor | KX Retrosynthesis is a critical task in drug discovery and organic synthesis, and AI is increasingly used to speed up the process. Existing AI methods have unsatisfactory performance and limited diversity. In practice, chemical reactions often cause local molecular changes, with considerable overlap between reactants and products. Inspired by this, Hou Tingjun's team at Zhejiang University proposed to redefine single-step retrosynthetic prediction as a molecular string editing task, iteratively refining the target molecular string to generate precursor compounds. And an editing-based retrosynthetic model EditRetro is proposed, which can achieve high-quality and diverse predictions. Extensive experiments show that the model achieves excellent performance on the standard benchmark data set USPTO-50 K, with a top-1 accuracy of 60.8%.

See all articles