


C++ program to remove the smallest element from both sides so that the 2* minimum value is greater than the maximum value
The problem involves removing elements from either side of a list of integers in such a way that 2*min is greater than max.
vector<int> arr = {250, 10, 11, 12, 19, 200}; res = solve(arr);
We can use brute force methods. We can try all possible satisfactions and find the longest subarray that satisfies the condition 2*min > max. We can also use dynamic programming methods to try all possible excessive and unwanted subarray combinations.
Example (using vector ADT)
Suppose we have an array, such as "[250, 10, 11, 12, 19, 200]". To get the best solution we need to remove elements [250, 200] to form an array [10, 11, 12, 19] where min is 10 and max is 19. Therefore 2*10 > 19. We are printing from an array, so the output is 2.
The following is a C program that describes how to remove a minimum number of elements from an array such that twice the minimum value is greater than the maximum value -
#include <iostream> #include <vector> using namespace std; int solve(vector<int> arr) { int startIndex = 0, endIndex = 0; bool foundAnAnswer = false; for (int start=0; start<arr.size(); start++) { int min = INT32_MAX, max = INT32_MIN; for (int end=start; end<arr.size(); end++) { if (arr[end] < min) min = arr[end]; if (arr[end] > max) max = arr[end]; if (2*min <= max) break; if (end - start > endIndex - startIndex || !foundAnAnswer) { startIndex = start; endIndex = end; foundAnAnswer = true; } } } if (!foundAnAnswer) return arr.size(); return (arr.size() - (endIndex - startIndex + 1)); } int main() { vector<int> arr = {250, 10, 11, 12, 19, 200}; cout << solve(arr); return 0; }
Output
2
Example (not using vector ADT)
The following is a C program describing how to remove the minimum number of elements from an array such that twice the minimum value is greater than the maximum value, but without using Vector ADT -
#include <iostream> using namespace std; int min(int a, int b) {return (a < b)? a : b;} int min(int arr[], int low, int high) { int minimum = arr[low]; for (int i=low+1; i<=high; i++) if (minimum > arr[i]) minimum = arr[i]; return minimum; } int max(int arr[], int low, int high) { int maximum = arr[low]; for (int i=low+1; i<=high; i++) if (maximum < arr[i]) maximum = arr[i]; return maximum; } int minimum_removals(int arr[], int low, int high) { if (low >= high) return 0; int m1 = min(arr, low, high); int m2 = max(arr, low, high); if (2*m1 > m2) return 0; return min(minimum_removals(arr, low+1, high), minimum_removals(arr, low, high-1)) + 1; } int main() { int arr[] = {12, 45, 32, 88, 100}; int n = sizeof(arr)/sizeof(arr[0]); cout << minimum_removals(arr, 0, n-1); return 0; }
Output
3
in conclusion
Here we use a brute force method to find the longest subarray. Other possible solutions might include checking every possible subarray by repeatedly popping elements from both sides and other methods. Nonetheless, their implementation is labor intensive and less optimized. The time complexity here is O(n^2) because we have already iterated through all sub-arrays.
The above is the detailed content of C++ program to remove the smallest element from both sides so that the 2* minimum value is greater than the maximum value. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.

How to output a countdown in C? Answer: Use loop statements. Steps: 1. Define the variable n and store the countdown number to output; 2. Use the while loop to continuously print n until n is less than 1; 3. In the loop body, print out the value of n; 4. At the end of the loop, subtract n by 1 to output the next smaller reciprocal.

Algorithms are the set of instructions to solve problems, and their execution speed and memory usage vary. In programming, many algorithms are based on data search and sorting. This article will introduce several data retrieval and sorting algorithms. Linear search assumes that there is an array [20,500,10,5,100,1,50] and needs to find the number 50. The linear search algorithm checks each element in the array one by one until the target value is found or the complete array is traversed. The algorithm flowchart is as follows: The pseudo-code for linear search is as follows: Check each element: If the target value is found: Return true Return false C language implementation: #include#includeintmain(void){i

C language functions are reusable code blocks, receive parameters for processing, and return results. It is similar to the Swiss Army Knife, powerful and requires careful use. Functions include elements such as defining formats, parameters, return values, and function bodies. Advanced usage includes function pointers, recursive functions, and callback functions. Common errors are type mismatch and forgetting to declare prototypes. Debugging skills include printing variables and using a debugger. Performance optimization uses inline functions. Function design should follow the principle of single responsibility. Proficiency in C language functions can significantly improve programming efficiency and code quality.

The readdir function in the Debian system is a system call used to read directory contents and is often used in C programming. This article will explain how to integrate readdir with other tools to enhance its functionality. Method 1: Combining C language program and pipeline First, write a C program to call the readdir function and output the result: #include#include#include#includeintmain(intargc,char*argv[]){DIR*dir;structdirent*entry;if(argc!=2){

C Language Data Structure: Overview of the Key Role of Data Structure in Artificial Intelligence In the field of artificial intelligence, data structures are crucial to processing large amounts of data. Data structures provide an effective way to organize and manage data, optimize algorithms and improve program efficiency. Common data structures Commonly used data structures in C language include: arrays: a set of consecutively stored data items with the same type. Structure: A data type that organizes different types of data together and gives them a name. Linked List: A linear data structure in which data items are connected together by pointers. Stack: Data structure that follows the last-in first-out (LIFO) principle. Queue: Data structure that follows the first-in first-out (FIFO) principle. Practical case: Adjacent table in graph theory is artificial intelligence
