Table of Contents
include
include < tensorflow/cc/ops/standard_ops.h>
include
Home Backend Development C++ How to use C++ for high-performance image tracking and target detection?

How to use C++ for high-performance image tracking and target detection?

Aug 26, 2023 pm 03:25 PM
c++ Target Detection high performance Image tracking

How to use C++ for high-performance image tracking and target detection?

How to use C for high-performance image tracking and target detection?

Abstract: With the rapid development of artificial intelligence and computer vision technology, image tracking and target detection have become important research areas. This article will introduce how to achieve high-performance image tracking and target detection by using C language and some open source libraries, and provide code examples.

  1. Introduction:
    Image tracking and target detection are two important tasks in the field of computer vision. They are widely used in many fields, such as video surveillance, autonomous driving, intelligent transportation systems, etc. In order to achieve high-performance image tracking and target detection, we will use C language and some common open source libraries, such as OpenCV and TensorFlow.
  2. Image tracking:
    Image tracking refers to tracking the position and movement of the target in consecutive video frames. Among them, commonly used algorithms include feature-based tracking algorithms (such as optical flow method, Kalman filter), and deep learning-based tracking algorithms (such as Siamese network, multi-target tracker). We will use the tracking interface provided by the OpenCV library, combined with the new algorithm under research, to achieve high-performance image tracking.

The following is a sample code that uses the OpenCV library to implement image tracking based on the optical flow method:

include

int main () {

cv::VideoCapture video("input.mp4");
cv::Mat frame, gray, prevGray, flow, colorFlow;

cv::TermCriteria termcrit(cv::TermCriteria::COUNT | cv::TermCriteria::EPS, 20, 0.03);
cv::Point2f prevPoint, currPoint;

while (true) {
    video >> frame;
    if (frame.empty()) {
        break;
    }

    cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY);

    if (prevGray.empty()) {
        gray.copyTo(prevGray);
    }

    cv::calcOpticalFlowFarneback(prevGray, gray, flow, 0.5, 3, 15, 3, 5, 1.2, 0);

    cv::cvtColor(prevGray, colorFlow, cv::COLOR_GRAY2BGR);

    for (int y = 0; y < frame.rows; y += 10) {
        for (int x = 0; x < frame.cols; x += 10) {
            const cv::Point2f& flowAtXY = flow.at<cv::Point2f>(y, x);
            cv::line(colorFlow, cv::Point(x, y), cv::Point(x + flowAtXY.x, y + flowAtXY.y), cv::Scalar(0, 255, 0));
            cv::circle(colorFlow, cv::Point(x, y), 1, cv::Scalar(0, 0, 255), -1);
        }
    }

    cv::imshow("Optical Flow", colorFlow);

    char key = cv::waitKey(30);
    if (key == 27) {
        break;
    }

    std::swap(prevGray, gray);
}

return 0;
Copy after login

}

  1. Object detection:
    Object detection refers to the task of detecting and locating specific objects in an image. Commonly used target detection algorithms include feature-based methods (such as Haar features and HOG features), deep learning-based methods (such as R-CNN, YOLO), etc. We will use the deep learning framework provided by the TensorFlow library, combined with the trained model, to achieve high-performance target detection in the C environment.

The following is a sample code that uses the TensorFlow library to implement target detection:

include

include < tensorflow/cc/ops/standard_ops.h>

include

int main() {

std::string modelPath = "model.pb";
std::string imagePath = "input.jpg";

tensorflow::GraphDef graphDef;
tensorflow::ReadBinaryProto(tensorflow::Env::Default(), modelPath, &graphDef);

tensorflow::SessionOptions sessionOptions;
tensorflow::Session* session;
tensorflow::NewSession(sessionOptions, &session);
session->Create(graphDef);

tensorflow::Scope root = tensorflow::Scope::NewRootScope();

tensorflow::string inputName = "input";
tensorflow::string outputName = "output";

tensorflow::ops::Placeholder inputPlaceholder(root, tensorflow::DT_FLOAT);
tensorflow::ops::ResizeBilinear resizeBilinear(root, inputPlaceholder, {224, 224});
tensorflow::ops::Cast cast(root, resizeBilinear, tensorflow::DT_UINT8);
tensorflow::ops::Div normalize(root, cast, 255.0f);
tensorflow::ops::Sub meanSubtract(root, normalize, {123.68f, 116.779f, 103.939f});
tensorflow::ops::Floor floor(root, meanSubtract);

std::vector<float> inputData; // 需要根据模型的输入层大小进行填充

tensorflow::FeedItem inputItem(inputName, tensorflow::Tensor(tensorflow::DT_FLOAT, {inputData.size(), 224, 224, 3}), inputData.data());

std::vector<tensorflow::Tensor> outputs;
session->Run({inputItem}, {outputName}, {}, &outputs);

tensorflow::Tensor outputTensor = outputs[0];
tensorflow::TTypes<float>::Flat outputFlat = outputTensor.flat<float>();

// 处理输出结果

return 0;
Copy after login

}

Conclusion:
This article introduces how to use C language and some open source libraries to achieve high-performance image tracking and target detection. By using the OpenCV library and some common image tracking algorithms, we can accurately track the position and movement of the target in the video. By using the TensorFlow library and a trained model, we can detect and locate specific objects in images. I hope this article will help readers achieve high-performance image tracking and target detection in practical applications.

References:
[1] OpenCV documentation: https://docs.opencv.org/
[2] TensorFlow documentation: https://www.tensorflow.org/

The above is the detailed content of How to use C++ for high-performance image tracking and target detection?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

C# vs. C  : History, Evolution, and Future Prospects C# vs. C : History, Evolution, and Future Prospects Apr 19, 2025 am 12:07 AM

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Where to write code in vscode Where to write code in vscode Apr 15, 2025 pm 09:54 PM

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

The Performance Race: Golang vs. C The Performance Race: Golang vs. C Apr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golang and C  : The Trade-offs in Performance Golang and C : The Trade-offs in Performance Apr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Do you use c in visual studio code Do you use c in visual studio code Apr 15, 2025 pm 08:03 PM

Writing C in VS Code is not only feasible, but also efficient and elegant. The key is to install the excellent C/C extension, which provides functions such as code completion, syntax highlighting, and debugging. VS Code's debugging capabilities help you quickly locate bugs, while printf output is an old-fashioned but effective debugging method. In addition, when dynamic memory allocation, the return value should be checked and memory freed to prevent memory leaks, and debugging these issues is convenient in VS Code. Although VS Code cannot directly help with performance optimization, it provides a good development environment for easy analysis of code performance. Good programming habits, readability and maintainability are also crucial. Anyway, VS Code is

How to use VSCode How to use VSCode Apr 15, 2025 pm 11:21 PM

Visual Studio Code (VSCode) is a cross-platform, open source and free code editor developed by Microsoft. It is known for its lightweight, scalability and support for a wide range of programming languages. To install VSCode, please visit the official website to download and run the installer. When using VSCode, you can create new projects, edit code, debug code, navigate projects, expand VSCode, and manage settings. VSCode is available for Windows, macOS, and Linux, supports multiple programming languages ​​and provides various extensions through Marketplace. Its advantages include lightweight, scalability, extensive language support, rich features and version

See all articles