Home Backend Development C++ How to use C++ for efficient video stream processing and video analysis?

How to use C++ for efficient video stream processing and video analysis?

Aug 25, 2023 pm 09:40 PM
c++ Video analysis video stream processing

How to use C++ for efficient video stream processing and video analysis?

How to use C for efficient video stream processing and video analysis?

Abstract: With the rapid development of video technology, more and more applications require video processing and analysis. This article will introduce how to use C language for efficient video stream processing and video analysis, including video stream acquisition, video decoding, video encoding and video analysis, and provide corresponding code examples.

1. Video stream acquisition
Video stream acquisition is the first step in video processing, which mainly obtains video streams from sources such as cameras, files, or networks. In C, you can use the OpenCV library for video stream acquisition, which is easy to use and powerful.
The following is a code example that uses the OpenCV library to obtain local video files:

#include <opencv2/opencv.hpp>

int main() {
    cv::VideoCapture cap("test.mp4");  // 打开本地视频文件
    if (!cap.isOpened()) {             // 检查文件是否成功打开
        std::cout << "Failed to open video file!" << std::endl;
        return -1;
    }

    cv::Mat frame;
    while (cap.read(frame)) {          // 读取每一帧画面
        cv::imshow("Video", frame);    // 显示视频
        cv::waitKey(1);
    }

    cap.release();                     // 释放资源

    return 0;
}
Copy after login

2. Video decoding
Video decoding is to decode the compressed video stream into the original video frame data for subsequent use processing and analysis. In C, you can use the FFmpeg library for video decoding, with extensive support and efficient decoding performance.
The following is a code example that uses the FFmpeg library to decode a video file and output each frame:

extern "C" {
#include <libavformat/avformat.h>
#include <libswscale/swscale.h>
}

int main() {
    av_register_all();

    AVFormatContext* format_ctx = nullptr;
    if (avformat_open_input(&format_ctx, "test.mp4", nullptr, nullptr) != 0) {
        std::cout << "Failed to open video file!" << std::endl;
        return -1;
    }

    avformat_find_stream_info(format_ctx, nullptr);

    int video_stream_index = -1;
    for (int i = 0; i < format_ctx->nb_streams; i++) {
        if (format_ctx->streams[i]->codecpar->codec_type == AVMEDIA_TYPE_VIDEO) {
            video_stream_index = i;  // 找到视频流索引
            break;
        }
    }

    AVCodecParameters* codec_params = format_ctx->streams[video_stream_index]->codecpar;
    AVCodec* codec = avcodec_find_decoder(codec_params->codec_id);
    if (codec == nullptr) {
        std::cout << "Failed to find decoder!" << std::endl;
        return -1;
    }

    AVCodecContext* codec_ctx = avcodec_alloc_context3(codec);
    avcodec_parameters_to_context(codec_ctx, codec_params);
    avcodec_open2(codec_ctx, codec, nullptr);

    AVFrame* frame = av_frame_alloc();
    AVPacket packet;

    while (av_read_frame(format_ctx, &packet) >= 0) {
        if (packet.stream_index == video_stream_index) {
            avcodec_send_packet(codec_ctx, &packet);
            avcodec_receive_frame(codec_ctx, frame);

            // TODO: 处理每一帧画面
        }
        av_packet_unref(&packet);
    }

    av_frame_free(&frame);
    avcodec_free_context(&codec_ctx);
    avformat_close_input(&format_ctx);

    return 0;
}
Copy after login

3. Video encoding
Video encoding is to compress the processed video frame data for storage and transmission. In C, it is also possible to use the FFmpeg library for video encoding to achieve efficient video compression and encoding.
The following is a code example that uses the FFmpeg library to encode the original video frame data into a video file in H.264 format:

extern "C" {
#include <libavformat/avformat.h>
#include <libswscale/swscale.h>
#include <libavcodec/avcodec.h>
}

int main() {
    av_register_all();

    AVFormatContext* format_ctx = nullptr;
    if (avformat_alloc_output_context2(&format_ctx, nullptr, nullptr, "output.mp4") != 0) {
        std::cout << "Failed to create output format context!" << std::endl;
        return -1;
    }

    AVOutputFormat* output_fmt = format_ctx->oformat;

    AVStream* video_stream = avformat_new_stream(format_ctx, nullptr);
    if (video_stream == nullptr) {
        std::cout << "Failed to create video stream!" << std::endl;
        return -1;
    }

    AVCodec* codec = avcodec_find_encoder(AV_CODEC_ID_H264);
    if (codec == nullptr) {
        std::cout << "Failed to find encoder!" << std::endl;
        return -1;
    }

    AVCodecContext* codec_ctx = avcodec_alloc_context3(codec);
    if (codec_ctx == nullptr) {
        std::cout << "Failed to allocate codec context!" << std::endl;
        return -1;
    }

    codec_ctx->width = 640;
    codec_ctx->height = 480;
    codec_ctx->pix_fmt = AV_PIX_FMT_YUV420P;
    codec_ctx->time_base = (AVRational){1, 30};

    if (format_ctx->oformat->flags & AVFMT_GLOBALHEADER) {
        codec_ctx->flags |= AV_CODEC_FLAG_GLOBAL_HEADER;
    }

    avcodec_open2(codec_ctx, codec, nullptr);

    avcodec_parameters_from_context(video_stream->codecpar, codec_ctx);

    avio_open(&format_ctx->pb, "output.mp4", AVIO_FLAG_WRITE);

    avformat_write_header(format_ctx, nullptr);

    // TODO: 逐帧编码并写入

    av_write_trailer(format_ctx);

    avio_close(format_ctx->pb);
    avcodec_free_context(&codec_ctx);
    avformat_free_context(format_ctx);

    return 0;
}
Copy after login

4. Video analysis
Video analysis is to perform various operations on video data. Algorithms and processing, by extracting key information and features in videos to complete different tasks, such as target detection, action recognition, etc. In C, you can use the OpenCV library for video analysis and combine it with other image processing algorithms for more advanced video analysis.
The following is a code example that uses the OpenCV library to perform target detection on videos:

#include <opencv2/opencv.hpp>

int main() {
    cv::VideoCapture cap("test.mp4");
    if (!cap.isOpened()) {
        std::cout << "Failed to open video file!" << std::endl;
        return -1;
    }

    cv::CascadeClassifier classifier("haarcascade_frontalface_default.xml");

    cv::Mat frame;
    while (cap.read(frame)) {
        cv::Mat gray;
        cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY);

        std::vector<cv::Rect> faces;
        classifier.detectMultiScale(gray, faces, 1.1, 3);

        for (const auto& rect : faces) {
            cv::rectangle(frame, rect, cv::Scalar(0, 255, 0), 2);
        }

        cv::imshow("Video", frame);
        cv::waitKey(1);
    }

    cap.release();

    return 0;
}
Copy after login

Summary: This article introduces how to use C language for efficient video stream processing and video analysis. Through the OpenCV library for video stream acquisition and video analysis, and through the FFmpeg library for video decoding and video encoding, various video processing and analysis functions can be easily implemented. Through the code examples provided in this article, readers can refer to them during the development process and apply them to actual projects. I hope this article will be helpful to readers in video processing and video analysis.

The above is the detailed content of How to use C++ for efficient video stream processing and video analysis?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

C# vs. C  : History, Evolution, and Future Prospects C# vs. C : History, Evolution, and Future Prospects Apr 19, 2025 am 12:07 AM

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Where to write code in vscode Where to write code in vscode Apr 15, 2025 pm 09:54 PM

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

The Performance Race: Golang vs. C The Performance Race: Golang vs. C Apr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Golang and C  : The Trade-offs in Performance Golang and C : The Trade-offs in Performance Apr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Do you use c in visual studio code Do you use c in visual studio code Apr 15, 2025 pm 08:03 PM

Writing C in VS Code is not only feasible, but also efficient and elegant. The key is to install the excellent C/C extension, which provides functions such as code completion, syntax highlighting, and debugging. VS Code's debugging capabilities help you quickly locate bugs, while printf output is an old-fashioned but effective debugging method. In addition, when dynamic memory allocation, the return value should be checked and memory freed to prevent memory leaks, and debugging these issues is convenient in VS Code. Although VS Code cannot directly help with performance optimization, it provides a good development environment for easy analysis of code performance. Good programming habits, readability and maintainability are also crucial. Anyway, VS Code is

How to use VSCode How to use VSCode Apr 15, 2025 pm 11:21 PM

Visual Studio Code (VSCode) is a cross-platform, open source and free code editor developed by Microsoft. It is known for its lightweight, scalability and support for a wide range of programming languages. To install VSCode, please visit the official website to download and run the installer. When using VSCode, you can create new projects, edit code, debug code, navigate projects, expand VSCode, and manage settings. VSCode is available for Windows, macOS, and Linux, supports multiple programming languages ​​and provides various extensions through Marketplace. Its advantages include lightweight, scalability, extensive language support, rich features and version

See all articles