Lamport's Bakery Algorithm: Lamport's Bakery Algorithm
A synchronization method called Lamport's Bakery method solves the critical section problem in parallel computing systems. When multiple processes need to use a shared resource simultaneously but only one process can do so, this is called a critical section problem. To avoid conflicts and guarantee system accuracy, the challenge is to ensure that each process uses resources in a mutually exclusive manner.
Pseudocode of Lamport baking algorithm
Here is the pseudocode of Lamport’s baking algorithm -
Initialize an array (called "select") of size N, where N is the total number of processes, to all zeros.
Initialize an array, called number, of size N, all zeros.
-
Each process i will execute the following code when it wants to enter the critical section -
Set selection[i] = 1
Set number[i] = max(number[0], number[1], ..., number[N-1]) 1
Set selection[i] = 0
For each other process j, repeat until (number[j] == 0) or (number[i], i)
Enter the key part
-
Each process i will execute the following code when leaving the critical section -
Set number[i] = 0

Lanport Baking Algorithm Code
Here is a piece of code explaining the practical application of Lamport's baking algorithm. We will use C as the implementation language in this example.
#include <iostream> #include <atomic> #include <thread> #define N 5 // total number of processes using namespace std; atomic<bool> entering[N] = {false}; // to keep track of which process is currently trying to enter critical section atomic<int> number[N] = {0}; // to hold the ticket number for each process void process(int i) { while (true) { // Step 1: Get ticket number entering[i] = true; int max_number = 0; for (int j = 0; j < N; j++) { if (number[j] > max_number) { max_number = number[j]; } } number[i] = max_number + 1; entering[i] = false; // Step 2: Wait until it is this process's turn to enter the critical section for (int j = 0; j < N; j++) { while (entering[j]) {} // wait until process j has finished choosing its ticket number while ((number[j] != 0) && ((number[j] < number[i]) || ((number[j] == number[i]) && j < i))) {} // busy wait until it is this process's turn to enter the critical section } // Step 3: Enter the critical section cout << "Process " << i << " enters the critical section." << endl; // perform critical section operations here // Step 4: Exit the critical section number[i] = 0; cout << "Process " << i << " exits the critical section." << endl; // perform remainder section operations here } } int main() { // create threads for each process thread t[N]; for (int i = 0; i < N; i++) { t[i] = thread(process, i); } // join threads for (int i = 0; i < N; i++) { t[i].join(); } return 0; }
Output
Process 0 enters the critical section. Process 0 exits the critical section. Process 1 enters the critical section. Process 1 exits the critical section. Process 2 enters the critical section. Process 2 exits the critical section. Process 3 enters the critical section. Process 3 exits the critical section. Process 0 enters the critical section. Process 0 exits the critical section. Process 1 enters the critical section. Process 1 exits the critical section. Process 4 enters the critical section. Process 4Process exits the critical section.2 .............
Advantages of Lamport baking algorithm
The advantages of Lamport’s baking algorithm are listed below -
Fairness is ensured by providing different tokens to processes or threads requesting access to shared resources.
Distributing tokens based on specified values prevents starvation.
Use token-based strategies that are simple and easy to understand and execute.
Efficient and does not require complex data structures or inter-process interactions.
It provides mutual exclusion without specialized hardware or hardware assistance.
It has a wide range of applications and strong adaptability. It can be applied to a variety of different scenarios to ensure fairness and mutual exclusion of concurrent calculations.
A useful tool for software engineers working on distributed or parallel systems.
Disadvantages of Lamport baking algorithm
Busy Wait - This algorithm calls busy wait, which can lead to inefficiency and high CPU utilization, especially when there are a large number of processes or threads competing for access to the same shared resource.
hunger - Although the algorithm ensures justice, there are no safeguards. Occasionally, a process or thread may be repeatedly stopped, which prevents it from obtaining a token and accessing resources.
Overhead - This algorithm requires more memory and processing time to determine the token sequence because it requires storing state information for each process or thread.
-
Complexity - Application of the algorithm can be difficult because it must carefully handle race conditions and deadlocks, and may use synchronization mechanisms such as mutexes or semaphores.
李>
in conclusion
A mutually exclusive algorithm called Lamport's baking algorithm ensures that individual processes or threads can take advantage of shared resources without interfering with each other. It's a simple algorithm that prevents starvation and ensures justice.
The algorithm works by assigning a token to each process or thread that makes a resource access request, and then comparing the values of these tokens to determine the order in which they were given. The resource is available first to operations with the fewest tokens.
The above is the detailed content of Lamport's Bakery Algorithm: Lamport's Bakery Algorithm. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

C language functions are reusable code blocks. They receive input, perform operations, and return results, which modularly improves reusability and reduces complexity. The internal mechanism of the function includes parameter passing, function execution, and return values. The entire process involves optimization such as function inline. A good function is written following the principle of single responsibility, small number of parameters, naming specifications, and error handling. Pointers combined with functions can achieve more powerful functions, such as modifying external variable values. Function pointers pass functions as parameters or store addresses, and are used to implement dynamic calls to functions. Understanding function features and techniques is the key to writing efficient, maintainable, and easy to understand C programs.

Algorithms are the set of instructions to solve problems, and their execution speed and memory usage vary. In programming, many algorithms are based on data search and sorting. This article will introduce several data retrieval and sorting algorithms. Linear search assumes that there is an array [20,500,10,5,100,1,50] and needs to find the number 50. The linear search algorithm checks each element in the array one by one until the target value is found or the complete array is traversed. The algorithm flowchart is as follows: The pseudo-code for linear search is as follows: Check each element: If the target value is found: Return true Return false C language implementation: #include#includeintmain(void){i

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.
