


Written in C++, find the number of prefix and prime numbers in a given range
In this article, we need to find multiple prime prefix sums in the given positive integer array arr[] and perform range queriesL,R, where L is the initial index value arr[ L ] of the prefixsum[ ] array, R is the number of prefix sums we need to find.
To fill the prefix sum array, we start from index L to index R and add the current value with the last element in the given array. Here is the example of the problem -
Input : arr[ ] = { 3, 5, 6, 2, 4 } L = 1, R = 3 Output : 3 Explanation : prefixsum[ 0 ] = arr[ L ] = 5 prefixsum[ 1 ] = prefixsum[ 0 ] + arr[ 2 ] = 11 prefixsum[ 2 ] = prefixsum[ 1 ] + arr[ 3 ] = 13 In prefixsum[ ] array all three 5, 11 and 13 are prime numbers in prefix sum array in given range. Input : arr[ ] = { 6, 10, 5, 8, 11 } L = 0, R = 3 Output : 1 Explanation : prefixsum[ 0 ] = arr[ L ] = 6 prefixsum[ 1 ] = prefixsum[ 0 ] + arr[ 1 ] = 16 prefixsum[ 2 ] = prefixsum[ 1 ] + arr[ 2 ] = 21 prefixsum[ 3 ] = prefixsum[ 2 ] + arr[ 3 ] = 29 In prefixsum[ ] array only 29 is the prime number in prefix sum array given range.
Ways to find the solution
From this question we can say we need to create a new array prefixsum[ ] and add prefix sum to the front of the array An element and the current element of the given array. The first element of the prefix sum array will be the value at index L in the given array.
We need to run a loop from L to R, where L and R are the given arrays, and then check the elements of the prefixsum[ ] array and increment the count for each prime found.
Example
#include<bits/stdc++.h> using namespace std; vector < bool > checkprime (int *arr, int n, int MAX){ vector < bool > p (n); bool Prime_val[MAX + 1]; for (int i = 2; i < MAX; i++) Prime_val[i] = true; Prime_val[1] = false; for (int p = 2; p * p <= MAX; p++){ // If prime[p] is not changed, then // it is a prime if (Prime_val[p] == true){ // Update all multiples of p for (int i = p * 2; i <= MAX; i += p) Prime_val[i] = false; } } for (int i = 0; i < n; i++){ if (Prime_val[arr[i]]) p[i] = true; else p[i] = false; } return p; } int main (){ int arr[] = { 2, 3, 4, 7, 9, 10 }; int s1 = sizeof (arr) / sizeof (arr[0]);//size of given array int L = 1, R = 3, s2 = R - L + 1; int prefixsum[s2]; int count = 0; prefixsum[0] = arr[L]; for (int i = L + 1, j = 1; i <= R && j < s1; i++, j++){ prefixsum[j] = prefixsum[j - 1] + arr[i]; } vector < bool > isprime = checkprime (prefixsum, s2, prefixsum[s2 - 1]); for (int i = 0; i < s2; i++) { if (isprime[i] == 1) count++; } cout <<"Number of prefix sum prime in given range query: " << count; return 0; }
Output
Number of prefix sum prime in given range query: 2
Explanation of the above code
In this code, we create an array prefixsum[ ] and use prefixsum[ ] of the array Fills it with the sum of the previous element and the current element of the given array. After that we check if all the numbers of the prefix array are prime or not, here we are using Sieve of Eratosthenes algorithm to check for prime numbers. Finally, increase the count for each prime and display the result.
Conclusion
In this article, we found prime numbers in prefix sum arrays by applying a naive approach and using Sieve of Eratosthenes. We can write the same program in other languages such as C, java, python and other languages. Hope this article is helpful to you.
The above is the detailed content of Written in C++, find the number of prefix and prime numbers in a given range. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.

How to output a countdown in C? Answer: Use loop statements. Steps: 1. Define the variable n and store the countdown number to output; 2. Use the while loop to continuously print n until n is less than 1; 3. In the loop body, print out the value of n; 4. At the end of the loop, subtract n by 1 to output the next smaller reciprocal.

Algorithms are the set of instructions to solve problems, and their execution speed and memory usage vary. In programming, many algorithms are based on data search and sorting. This article will introduce several data retrieval and sorting algorithms. Linear search assumes that there is an array [20,500,10,5,100,1,50] and needs to find the number 50. The linear search algorithm checks each element in the array one by one until the target value is found or the complete array is traversed. The algorithm flowchart is as follows: The pseudo-code for linear search is as follows: Check each element: If the target value is found: Return true Return false C language implementation: #include#includeintmain(void){i

The readdir function in the Debian system is a system call used to read directory contents and is often used in C programming. This article will explain how to integrate readdir with other tools to enhance its functionality. Method 1: Combining C language program and pipeline First, write a C program to call the readdir function and output the result: #include#include#include#includeintmain(intargc,char*argv[]){DIR*dir;structdirent*entry;if(argc!=2){

C language functions are reusable code blocks, receive parameters for processing, and return results. It is similar to the Swiss Army Knife, powerful and requires careful use. Functions include elements such as defining formats, parameters, return values, and function bodies. Advanced usage includes function pointers, recursive functions, and callback functions. Common errors are type mismatch and forgetting to declare prototypes. Debugging skills include printing variables and using a debugger. Performance optimization uses inline functions. Function design should follow the principle of single responsibility. Proficiency in C language functions can significantly improve programming efficiency and code quality.

C Language Data Structure: Overview of the Key Role of Data Structure in Artificial Intelligence In the field of artificial intelligence, data structures are crucial to processing large amounts of data. Data structures provide an effective way to organize and manage data, optimize algorithms and improve program efficiency. Common data structures Commonly used data structures in C language include: arrays: a set of consecutively stored data items with the same type. Structure: A data type that organizes different types of data together and gives them a name. Linked List: A linear data structure in which data items are connected together by pointers. Stack: Data structure that follows the last-in first-out (LIFO) principle. Queue: Data structure that follows the first-in first-out (FIFO) principle. Practical case: Adjacent table in graph theory is artificial intelligence
