How to do accurate decimal calculations using Python?
In this article, we will learn how to do accurate decimal calculations in Python.
usage instructions
Using the Decimal() function of the decimal Module
Use the fsum() function of the math module
It is a well-known shortcoming that floating point numbers cannot accurately represent all decimal numbers. Furthermore, even simple mathematical calculations can produce some errors. For example −
Example
The following program demonstrates the inability of floating-point integers to accurately represent all decimal numbers-
x = 4.2 y = 3.1 # printing the sum of both the variables print("x + y =", x + y) # checking if the sum is both the variables is equal to 7.3 print((x + y) == 7.3)
Output
When executed, the above program will generate the following output -
x + y = 7.300000000000001 False
These errors are a "feature" of the IEEE 754 arithmetic standard used by the system's underlying CPU and its floating-point unit. If you write code using float instances, there is nothing you can do to prevent such errors anyway, since Python's float data type uses native representation to hold the data.
Using the decimal module will give you greater accuracy at the cost of some performance. Let us see it below.
Method 1: Use the Decimal() function of the decimal module
Example
The following program shows an example of using the Decimal() function for precise decimal calculations:
# importing Decimal from decimal module from decimal import Decimal x = Decimal('4.2') y = Decimal('3.1') # printing the sum of both the variables print("x + y =", x + y) # checking if the sum is both the variables is equal to 7.3 using by passing the sum to the Decimal Function print((x + y) == Decimal('7.3'))
Output
When executed, the above program will generate the following output -
x + y = 7.3 True
In the above code, it may feel a little strange at first that the number is specified as a string. However, decimal objects work exactly as you would expect (all common mathematical operations supported, etc.). When you print them or use them in string formatting functions, they look like ordinary numbers.
Controlling various aspects of calculations, such as the number of digits and rounding methods, is a key feature of decimal.
Example
To do this, create a local context and modify its settings.
# importing localcontext from decimal module from decimal import localcontext x = Decimal('2.3') y = Decimal('2.7') # dividing x by y(returns as a floating-point number) print(x / y) with localcontext() as context: # rounding the number upto 3 digits i.e, precision 3 context.prec = 3 # Dividing x by y with precision set to 3 print(x / y)
Output
When executed, the above program will generate the following output -
0.8518518518518518518518518519 0.852
Increase accuracy value to '60' for better accuracy
Example
# importing localcontext from decimal module import decimal from decimal import localcontext x = decimal.Decimal('2.3') y = decimal.Decimal('2.7') # dividing x by y(returns as a floating-point number) print(x / y) with localcontext() as context: # Rounding the number upto 60 digits i.e, precision 60 context.prec = 60 # Dividing x by y with precision set to 3 print(x / y)
Output
When executed, the above program will generate the following output -
0.8518518518518518518518518519 0.851851851851851851851851851851851851851851851851851851851852
Method 2: Use the fsum() function of the math module
The decimal module implements IBM's "Universal Decimal Arithmetic Specification".
Needless to say, there are many customization options that are beyond the scope of this article.
Python beginners may be tempted to use the decimal module to solve precision problems with floating-point data types. But you also need to understand your application area. The ordinary floating point type is usually more commonly used when dealing with scientific or engineering problems, computer graphics, or other things of a scientific nature.
For example, few elements in the real world can be measured with the 17 digits of precision provided by floating point numbers. Therefore, even small calculation errors have no effect. Moreover, native floating point is also significantly faster, which is critical for situations where a large number of calculations need to be run.
Example
However, you can't completely avoid mistakes. Many algorithms have been widely studied by mathematicians, and some are better at handling errors than others. Additionally, some caution is required because the practice of subtracting cancellations and adding large and small numbers can have consequences.
inputList = [1.23e+18, 1, -1.23e+18] # observe how the 1 disappears here if we perform sum() on the list print(sum(inputList))
Output
When executed, the above program will generate the following output −
0.0
fsum() function is used to find the sum between a given range or iterable object. It requires importing the math library. It is widely used in mathematical calculations.
grammar
The following is the syntax of the function.
maths.fsum( iterable )
Iterable objects can be ranges, arrays, or lists.
Return type -
It returns a floating point number.
Example
The following example can be used for a more accurate implementation in math.fsum() -
# importing math module import math # input list inputList = [1.23e+18, 1, -1.23e+18] # adding the sum of elements of the list using the fsum() function print(math.fsum(inputList))
Output
When executed, the above program will generate the following output -
1.0
In contrast, you actually need to study and understand the error propagation characteristics of other algorithms.
Nevertheless, programs dealing with topics such as finance are where the decimal module is most commonly used. It is very unpleasant when small inaccuracies appear in the calculations of these systems.
Therefore, the decimal module provides a way to avoid this situation. Decimal objects are often encountered again when Python interacts with databases, especially when accessing financial data.
in conclusion
We learned in this article that under certain circumstances regular calculations fail, so we need correct decimal calculations. We learned how to perform accurate decimal calculations using two separate functions, decimal() and fsum(). We also learned how to use the localcontext() function to set the precision of the results.
The above is the detailed content of How to do accurate decimal calculations using Python?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".
