


How to use Linux for memory management and optimization
How to use Linux for memory management and optimization
[Introduction]
In the Linux system, memory management and optimization is a very important topic. Properly managing memory can improve system performance and stability, while memory optimization can maximize the use of system memory resources. This article will introduce how to use Linux for memory management and optimization, and provide some practical code examples.
[1. Memory Management]
1.1 View memory information
In Linux systems, you can use the command "free" to view the system's memory information, including total memory, used memory, and available memory. , cache and swap partitions. The sample code is as follows:
$ free -h
The output is similar to the following:
total used free shared buff/cache available Mem: 7.7G 1.9G 706M 512M 5.1G 5.1G Swap: 2.0G 0B 2.0G
1.2 Clean cache
Sometimes the system caches some data into memory to speed up access. But if memory is tight, you can free up valuable memory space by freeing the cache. The sample code is as follows:
$ sync; echo 1 > /proc/sys/vm/drop_caches
1.3 Release unnecessary memory
Sometimes a process takes up a lot of memory, but it actually does not use the memory. At this time, unnecessary memory can be released through the "malloc_trim" function. The sample code is as follows:
#include <malloc.h> ... void trim_memory() { malloc_trim(0); }
[2. Memory Optimization]
2.1 Using large page memory
In some applications that require large memory continuous space, using large page memory can improve performance and reduce memory fragmentation . Hugepages can be enabled by following these steps. The sample code is as follows:
$ echo "vm.nr_hugepages=128" >> /etc/sysctl.conf $ sysctl -p
2.2 Transparent Huge Pages
Transparent Huge Pages is a kernel feature that can automatically convert small page memory into large page memory to reduce memory overhead. You can enable transparent hugepages by following these steps. The sample code is as follows:
$ echo "always" > /sys/kernel/mm/transparent_hugepage/enabled
2.3 Memory recycling strategy
There are a variety of memory recycling strategies to choose from in the Linux system, which can be adjusted according to specific needs. Common memory recovery strategies include "Lru", "Generally FIFO" and "Buddy". The sample code is as follows:
$ echo "lru" > /sys/kernel/mm/allocstool/lru $ echo "generallyfifo" > /sys/kernel/mm/allocstool/lru $ echo "buddy" > /sys/kernel/mm/allocstool/lru
[Summary]
This article introduces how to use Linux for memory management and optimization, and provides some practical code examples. Properly managing memory and optimizing memory can improve system performance and stability. Hope this article is helpful to you.
The above is the detailed content of How to use Linux for memory management and optimization. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

In Debian systems, the log files of the Tigervnc server are usually stored in the .vnc folder in the user's home directory. If you run Tigervnc as a specific user, the log file name is usually similar to xf:1.log, where xf:1 represents the username. To view these logs, you can use the following command: cat~/.vnc/xf:1.log Or, you can open the log file using a text editor: nano~/.vnc/xf:1.log Please note that accessing and viewing log files may require root permissions, depending on the security settings of the system.

The readdir function in the Debian system is a system call used to read directory contents and is often used in C programming. This article will explain how to integrate readdir with other tools to enhance its functionality. Method 1: Combining C language program and pipeline First, write a C program to call the readdir function and output the result: #include#include#include#includeintmain(intargc,char*argv[]){DIR*dir;structdirent*entry;if(argc!=2){

DebianSniffer is a network sniffer tool used to capture and analyze network packet timestamps: displays the time for packet capture, usually in seconds. Source IP address (SourceIP): The network address of the device that sent the packet. Destination IP address (DestinationIP): The network address of the device receiving the data packet. SourcePort: The port number used by the device sending the packet. Destinatio

Linux beginners should master basic operations such as file management, user management and network configuration. 1) File management: Use mkdir, touch, ls, rm, mv, and CP commands. 2) User management: Use useradd, passwd, userdel, and usermod commands. 3) Network configuration: Use ifconfig, echo, and ufw commands. These operations are the basis of Linux system management, and mastering them can effectively manage the system.

This article describes how to clean useless software packages and free up disk space in the Debian system. Step 1: Update the package list Make sure your package list is up to date: sudoaptupdate Step 2: View installed packages Use the following command to view all installed packages: dpkg--get-selections|grep-vdeinstall Step 3: Identify redundant packages Use the aptitude tool to find packages that are no longer needed. aptitude will provide suggestions to help you safely delete packages: sudoaptitudesearch '~pimportant' This command lists the tags

This article discusses how to improve Hadoop data processing efficiency on Debian systems. Optimization strategies cover hardware upgrades, operating system parameter adjustments, Hadoop configuration modifications, and the use of efficient algorithms and tools. 1. Hardware resource strengthening ensures that all nodes have consistent hardware configurations, especially paying attention to CPU, memory and network equipment performance. Choosing high-performance hardware components is essential to improve overall processing speed. 2. Operating system tunes file descriptors and network connections: Modify the /etc/security/limits.conf file to increase the upper limit of file descriptors and network connections allowed to be opened at the same time by the system. JVM parameter adjustment: Adjust in hadoop-env.sh file

To configure the DNS settings for the Debian mail server, you can follow these steps: Open the network configuration file: Use a text editor (such as vi or nano) to open the network configuration file /etc/network/interfaces. sudonano/etc/network/interfaces Find network interface configuration: Find the network interface to be modified in the configuration file. Normally, the configuration of the Ethernet interface is located in the ifeth0 block.

The five basic components of the Linux system are: 1. Kernel, 2. System library, 3. System utilities, 4. Graphical user interface, 5. Applications. The kernel manages hardware resources, the system library provides precompiled functions, system utilities are used for system management, the GUI provides visual interaction, and applications use these components to implement functions.
