


How to implement request rate limiting and prevent malicious requests in FastAPI
How to implement request rate limiting and prevent malicious requests in FastAPI
Introduction: In web development, we often encounter situations where requests are frequent, malicious, or too many requests. These situations may be harmful to Servers create stress and even security risks. In FastAPI, we can increase the stability and security of the server by implementing request rate limiting and preventing malicious requests. This article will introduce how to implement request rate limiting and prevent malicious requests in FastAPI, as well as the corresponding code examples.
1. Request rate limit
Request rate limit refers to limiting the client's requests, limiting the frequency and number of requests, to prevent the server from crashing due to too many requests or causing performance damage due to frequent requests. decline. In FastAPI, we can use the fastapi-limiter
library to implement the request rate limiting function.
-
Install dependent libraries
pip install fastapi-limiter
Copy after login Add request rate limiting middleware in the FastAPI application
from fastapi import FastAPI from fastapi_limiter import FastAPILimiter app = FastAPI() @app.on_event("startup") async def startup_event(): # 设置请求速率限制,例如每分钟最多10个请求 await FastAPILimiter.init() @app.on_event("shutdown") async def shutdown_event(): # 关闭请求限速 await FastAPILimiter.shutdown() @app.get("/api/users") async def get_users(): return {"result": "success"}
Copy after login
Through the above code, we can limit up to 10 /api/users
requests per minute. Requests exceeding the limit will be rejected.
2. Preventing malicious requests
Preventing malicious requests refers to identifying and rejecting malicious requests to prevent attacks on the server. In FastAPI, we can use the rebound
library to implement the function of preventing malicious requests.
Install dependent libraries
pip install rebound
Copy after loginAdd a decorator to prevent malicious requests in the FastAPI application
from fastapi import FastAPI from rebound.decorators import client_rate_limit app = FastAPI() @app.get("/api/users") @client_rate_limit(max_requests=10, interval_seconds=60) async def get_users(): return {"result": "success"}
Copy after login
Through the above code, we can limit each client to send a maximum of 10 /api/users
requests within 60 seconds. Requests exceeding the limit will be rejected.
Summary:
By using the middleware and third-party libraries provided by FastAPI, we can easily implement request rate limiting and prevent malicious requests. In actual web development, request rate limiting and methods to prevent malicious requests should be used appropriately according to specific scenarios and needs, thereby improving the stability and security of the server.
The above is an introduction on how to implement request rate limiting and prevent malicious requests in FastAPI. I hope it will be helpful to everyone.
The above is the detailed content of How to implement request rate limiting and prevent malicious requests in FastAPI. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.
