Home Backend Development Python Tutorial How to use Python regular expressions for code complexity analysis

How to use Python regular expressions for code complexity analysis

Jun 23, 2023 am 10:10 AM
code analysis python regular expression Code complexity analysis

As software development continues to advance, code quality becomes more and more important. Code complexity analysis is one of the key links. Code complexity analysis can help developers discover potential problems, avoid loopholes and errors in the code, and improve the maintainability and readability of the code. This article will introduce how to use Python regular expressions for code complexity analysis.

  1. What is code complexity analysis

Code complexity is an indicator to measure the difficulty of code, including two aspects: the complexity of the code execution path and the code structure on the complexity. The complexity of an execution path is measured by the number of basic paths, which are simple paths in the program that do not contain loops. The complexity of the code structure depends on the number of nested levels of code blocks, control structures, and functions. These indicators can be used to quantitatively measure the complexity of a software system for better maintenance and testing.

  1. Use regular expressions to analyze code complexity

Regular expression is an expression used to match strings, usually used to search, replace and Split text. In code complexity analysis, we can use regular expressions to search for specific patterns in the code to count the number of nested levels of control structures and functions in the code, as well as the number of execution paths.

2.1 Search for control structures and functions

In Python, we can use regular expressions to search the beginning and end of control structures and functions such as if, for, while, and def in the code. Here is a simple regular expression example to match if statements in Python code:

if .*:
Copy after login

This regular expression matches any line of code that starts with if and ends with a colon. In this way, we can search for all if statements, for loops, and while loops in the code and count their nesting levels.

2.2 Calculate the number of nesting levels

The number of nesting levels refers to the number of levels of one control structure or function within another control structure or function. In order to count the number of nesting levels, we can use the stack structure in Python to save the code blocks and functions being processed. When we encounter a new control structure or function, we push it onto the stack and pop it after processing. The remaining elements in the stack represent the number of nesting levels. Here is a sample code:

import re

def parse_code(code):
    stack = []
    depth = 0

    for line in code.split("
"):
        if re.match(".*:s*$", line):
            stack.append("block")
            depth += 1
        elif re.match("def.*:", line):
            stack.append("function")
            depth += 1
        elif re.match(".*s(if|else|elif|for|while)s.*:", line):
            depth += 1
        while stack and stack[-1] != "block":
            stack.pop()
            depth -= 1
        if stack:
            print("{:>2}: {}".format(depth, line.strip()))

        if re.match("^s*$", line):
            while stack and stack[-1] != "block":
                stack.pop()
                depth -= 1
    return depth
Copy after login

This function splits the code by lines and then uses regular expressions to search for the if, else, elif, for and while keywords as well as function, def and colon. When a code block or function definition is encountered, it is pushed onto the stack. We then find the block of code or function we are working on at the top of the stack and calculate the depth as needed.

2.3 Calculate the number of basic paths

Basic paths refer to simple paths that do not contain loops in the program. In order to count the number of basic paths, we can use code coverage analysis techniques to traverse all paths of the program and count their number. The following is a sample code:

import re

def count_paths(code):
    paths = []
    visited = set()

    def walk(path):
        if path[-1] in visited:
            return

        visited.add(path[-1])

        if re.match(".*:s*$", path[-1]):
            paths.append(list(path))

        for i, line in enumerate(code.split("
")):
            if line == path[-1]:
                for j in range(i+1, len(code.split("
"))):
                    if line in code.split("
")[j]:
                        walk(path + [code.split("
")[j]])

    for i, line in enumerate(code.split("
")):
        if re.match(".*:s*$", line):
            walk([line])
            break

    return len(paths)
Copy after login

This function uses a recursive method to traverse all paths of lines in the code and only records simple paths that do not contain loops.

  1. Summary

Code complexity is a crucial parameter in software development. By calculating complexity, we can better understand the structure and difficulty of the program, and can Help developers find possible vulnerabilities and errors in their code. This article introduces how to use Python regular expressions for code complexity analysis, including searching for control structures and functions, calculating the number of nesting levels, and calculating the number of basic paths. I hope this article can help readers better understand and analyze the complexity of software code and improve the maintainability and readability of the code.

The above is the detailed content of How to use Python regular expressions for code complexity analysis. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1666
14
PHP Tutorial
1273
29
C# Tutorial
1252
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python vs. C  : Exploring Performance and Efficiency Python vs. C : Exploring Performance and Efficiency Apr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Which is part of the Python standard library: lists or arrays? Which is part of the Python standard library: lists or arrays? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Learning Python: Is 2 Hours of Daily Study Sufficient? Learning Python: Is 2 Hours of Daily Study Sufficient? Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

See all articles