Home Backend Development Python Tutorial Data visualization technology in Python web development

Data visualization technology in Python web development

Jun 17, 2023 am 11:32 AM
python data visualization web development

Data visualization technology in Python web development

With the rapid development of data analysis and mining, data visualization has become an indispensable part of it. As a powerful programming language, Python has also become one of the favorite tools of many data scientists and analysts. In Python web development, the application of data visualization technology is also becoming more and more important. This article will introduce data visualization techniques commonly used in Python web development and how to use them.

  1. Matplotlib

Matplotlib is one of the most commonly used drawing libraries in Python and can be used to draw various types of charts. It is designed to be simple, easy to extend, and supports various output formats, including PNG, PDF, SVG, etc. Using Matplotlib, you can easily create various types of charts such as line charts, scatter plots, histograms, etc.

Install Matplotlib:

You can install Matplotlib from the command line using the pip command:

pip install matplotlib
Copy after login

Using Matplotlib:

Here are some examples of Matplotlib:

Drawing a line chart:

import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5, 6]
y = [1, 3, 2, 4, 5, 3]
plt.plot(x, y)
plt.show()
Copy after login

Drawing a scatter plot:

import matplotlib.pyplot as plt
import numpy as np
x = np.random.rand(50)
y = np.random.rand(50)
colors = np.random.rand(50)
area = np.pi * (15 * np.random.rand(50)) ** 2 
plt.scatter(x, y, s=area, c=colors, alpha=0.5)
plt.show()
Copy after login

More Matplotlib usage tutorials can be found in the official documentation.

  1. Seaborn

Seaborn is an extension library based on Matplotlib, providing a higher-level interface and more drawing options. Seaborn supports many types of statistical charts, including heat maps, bar charts, box plots, etc. Its design focuses on aesthetics and readability, helping users better understand their data.

Install Seaborn:

Seaborn can be installed on the command line using the pip command:

pip install seaborn
Copy after login

Using Seaborn:

Here are some examples of using Seaborn:

Draw a heat map:

import seaborn as sns
import numpy as np
np.random.seed(0)
data = np.random.rand(10, 12)
sns.heatmap(data, cmap='YlGnBu')
Copy after login

Draw a bar chart:

import seaborn as sns
import numpy as np
np.random.seed(0)
data = np.random.normal(size=[20, 5])
sns.barplot(x="day", y="total_bill", data=tips)
Copy after login

More Seaborn usage tutorials can be found in the official documentation.

  1. Plotly

Plotly is an interactive chart library that supports multiple types of charts, such as heat maps, bar charts, scatter plots, etc. Its biggest feature is that it supports web-based interactive charts, making it easy to create interactive charts on web pages and interact directly with users.

Installing Plotly:

You can use the pip command to install Plotly on the command line:

pip install plotly
Copy after login

Using Plotly:

Here are some examples of Plotly:

Draw a scatter plot:

import plotly.graph_objs as go
import numpy as np
np.random.seed(0)
x = np.random.randn(500)
y = np.random.randn(500) 
fig = go.Figure(data=go.Scatter(x=x, y=y, mode='markers'))
fig.show()
Copy after login

Draw a box plot:

import plotly.graph_objs as go
import pandas as pd
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/iris.csv")
fig = go.Figure()
for species in df.species.unique():
    fig.add_trace(go.Box(y=df[df.species == species].sepal_width, name=species))
fig.show()
Copy after login

More Plotly usage tutorials can be found in the official documentation.

Conclusion

Data visualization technology in Python web development can not only help us better understand data, but also support decision-making and planning. This article introduces data visualization technologies commonly used in Python web development, including Matplotlib, Seaborn, and Plotly. Using these tools, we can quickly create various types of charts and display trends and distributions of data. These tools are also very suitable for embedding interactive charts in web applications to interact directly with users, making data analysis more intuitive and understandable.

The above is the detailed content of Data visualization technology in Python web development. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1669
14
PHP Tutorial
1273
29
C# Tutorial
1256
24
PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

How to run sublime code python How to run sublime code python Apr 16, 2025 am 08:48 AM

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

The Future of HTML, CSS, and JavaScript: Web Development Trends The Future of HTML, CSS, and JavaScript: Web Development Trends Apr 19, 2025 am 12:02 AM

The future trends of HTML are semantics and web components, the future trends of CSS are CSS-in-JS and CSSHoudini, and the future trends of JavaScript are WebAssembly and Serverless. 1. HTML semantics improve accessibility and SEO effects, and Web components improve development efficiency, but attention should be paid to browser compatibility. 2. CSS-in-JS enhances style management flexibility but may increase file size. CSSHoudini allows direct operation of CSS rendering. 3.WebAssembly optimizes browser application performance but has a steep learning curve, and Serverless simplifies development but requires optimization of cold start problems.

JavaScript and the Web: Core Functionality and Use Cases JavaScript and the Web: Core Functionality and Use Cases Apr 18, 2025 am 12:19 AM

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

The Power of React in HTML: Modern Web Development The Power of React in HTML: Modern Web Development Apr 18, 2025 am 12:22 AM

The application of React in HTML improves the efficiency and flexibility of web development through componentization and virtual DOM. 1) React componentization idea breaks down the UI into reusable units to simplify management. 2) Virtual DOM optimization performance, minimize DOM operations through diffing algorithm. 3) JSX syntax allows writing HTML in JavaScript to improve development efficiency. 4) Use the useState hook to manage state and realize dynamic content updates. 5) Optimization strategies include using React.memo and useCallback to reduce unnecessary rendering.

See all articles