Home Backend Development Python Tutorial Detailed explanation of deep learning pre-training model in Python

Detailed explanation of deep learning pre-training model in Python

Jun 11, 2023 am 08:12 AM
python deep learning Pre-trained model

With the development of artificial intelligence and deep learning, pre-training models have become a popular technology in natural language processing (NLP), computer vision (CV), speech recognition and other fields. As one of the most popular programming languages ​​at present, Python naturally plays an important role in the application of pre-trained models. This article will focus on the deep learning pre-training model in Python, including its definition, types, applications and how to use the pre-training model.

What is a pre-trained model?

The main difficulty of deep learning models lies in training a large amount of high-quality data, and pre-training models is a way to solve this problem. Pre-trained models refer to models pre-trained on large-scale data, which have strong generalization capabilities and can be fine-tuned to adapt to different tasks. Pre-trained models are usually widely used in computer vision, natural language processing, voice recognition and other fields.

Pre-training models can be divided into two types, one is a self-supervised learning pre-training model, and the other is a supervised learning pre-training model.

Self-supervised learning pre-training model

Self-supervised learning pre-training model refers to a model that uses unlabeled data for training. Data that does not require annotation can come from a large amount of text on the Internet, videos with many views, or data in fields such as voice and images. In this model, the model usually tries to predict missing information and thus learns more useful features. The most commonly used self-supervised learning pre-trained models are BERT (Bidirectional Encoder Representations from Transformers) and GPT (Generative Pre-trained Transformer).

Supervised learning pre-training model

Supervised learning pre-training model refers to a model trained with a large amount of labeled data. In this model, annotated data can include classification or regression tasks, as well as sequence length prediction tasks, etc. Among the supervised learning pre-trained models, the most commonly used are language models (LM) and image classification models.

Application

Deep learning based on pre-trained models is widely used in computer vision, natural language processing, voice recognition and other fields. Their applications are briefly introduced below.

Computer Vision

In the field of computer vision, pre-trained models are mainly used for tasks such as image classification, target detection, and image generation. The most commonly used pre-trained models include VGG, ResNet, Inception, MobileNet, etc. These models can be directly applied to image classification tasks or can be fine-tuned to suit specific tasks.

Natural Language Processing

In the field of natural language processing, pre-trained models are mainly used in tasks such as text classification, named entity recognition, embedded analysis and machine translation. The most commonly used pre-trained models include BERT, GPT, XLNet, etc. These models are widely used in the field of natural language processing because they can learn context-related semantic information, thereby effectively solving difficult problems in the field of natural language processing.

Sound Recognition

In the field of sound recognition, pre-trained models are mainly used in tasks such as speech recognition and speech generation. The most commonly used pre-trained models include CNN, RNN, LSTM, etc. These models can learn the characteristics of sounds to effectively identify elements such as words, syllables, or phonemes in the signal.

How to use pre-trained models

Python is one of the main programming languages ​​​​for deep learning, so it is very convenient to use Python to train and use pre-trained models. Here's a brief introduction to how to use pretrained models in Python.

Using Hugging Face

Hugging Face is a deep learning framework based on PyTorch. It provides a series of pre-trained models and tools to help developers use pre-trained models more conveniently. . Hugging Face can be installed through the following method:

!pip install transformers
Copy after login

Using TensorFlow

If you want to use TensorFlow to train and use the pre-trained model, you can install TensorFlow through the following command:

!pip install tensorflow
Copy after login

The pretrained model can then be used through TensorFlow Hub. For example, the BERT model can be used as follows:

import tensorflow_hub as hub
module_url = "https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/1"
bert_layer = hub.KerasLayer(module_url, trainable=True)
Copy after login

Summary

Pre-training models are a very useful method that can help deep learning models generalize and adapt better in different fields. As one of the most popular programming languages ​​currently, Python also plays an important role in the application of pre-trained models. This article introduces the basic concepts, types, and applications of deep learning pre-training models in Python, and provides simple methods for using Hugging Face and TensorFlow Hub.

The above is the detailed content of Detailed explanation of deep learning pre-training model in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

How to run sublime code python How to run sublime code python Apr 16, 2025 am 08:48 AM

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

Can vs code run in Windows 8 Can vs code run in Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

Where to write code in vscode Where to write code in vscode Apr 15, 2025 pm 09:54 PM

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Can visual studio code be used in python Can visual studio code be used in python Apr 15, 2025 pm 08:18 PM

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

See all articles