Home Backend Development Python Tutorial Practical crawler combat in Python: 58 city crawler

Practical crawler combat in Python: 58 city crawler

Jun 10, 2023 am 11:36 AM
python reptile Same city

With the rapid development of the Internet, people can obtain the information they need through various channels. In this information age, web crawlers have become an indispensable tool. In this article, we will introduce the actual crawler in Python-58 city crawler.

1. Introduction to crawlers

A web crawler is an automated program that accesses web pages through the HTTP protocol and extracts the required data. On the Internet, there is a lot of data, but not all of it is available through APIs. Therefore, crawlers have become an important means of obtaining data.

The workflow of a crawler is generally divided into three steps:

  1. Download web pages: download web pages through HTTP protocol, usually implemented using the requests library;
  2. Parse web pages: The downloaded web page parses and extracts the required data, which is generally implemented using the BeautifulSoup4 library;
  3. Storage data: Save the required data locally or in a database.

2. Practical crawler combat: 58 city crawler

58 city is a national classified information website, where users can publish product information, rental information, recruitment information, etc. This article will introduce how to implement the 58 city crawler through Python to obtain rental information.

  1. Analyze the website

Before crawling, you need to analyze the 58 city website. By entering the rental page and selecting the desired city, you can find that the URL contains city information. For example, the URL of the rental page is: "https://[city pinyin].58.com/zufang/". By modifying the city pinyin in the URL, you can crawl rental information in other cities.

After opening the rental page, you can find that the page structure is divided into two parts: the search bar and the rental information list. The rental information list includes the title, rent, area, geographical location, housing type and other information of each rental information.

  1. Writing a crawler

After analyzing the 58.com website, just write a crawler. First, you need to import the requests and BeautifulSoup4 libraries. The code is as follows:

import requests
from bs4 import BeautifulSoup
Copy after login

Next, obtaining the rental information in each city requires constructing the correct URL. The code is as follows:

city_pinyin = "bj"
url = "https://{}.58.com/zufang/".format(city_pinyin)
Copy after login

After obtaining the correct URL, you can use the requests library to obtain the HTML source code of the page. The code is as follows:

response = requests.get(url)
html = response.text
Copy after login

Now that you have obtained the HTML source code of the rental page, you need to use the BeautifulSoup4 library to parse the HTML source code and extract the required data. According to the page structure, the rental information list is contained in a div tag with a class of "list-wrap". We can obtain all div tags with class "list-wrap" through the find_all() function in the BeautifulSoup4 library. The code is as follows:

soup = BeautifulSoup(html, "lxml")
div_list = soup.find_all("div", class_="list-wrap")
Copy after login

After obtaining the div tag, you can traverse the tag list and extract the data of each rental information. According to the page structure, each piece of rental information is contained in a div tag with class "des", including title, rent, area, geographical location, housing type and other information. The code is as follows:

for div in div_list:
    info_list = div.find_all("div", class_="des")
    for info in info_list:
        # 提取需要的租房数据
Copy after login

In the for loop, we used the find_all() function to obtain all div tags with class "des". Next, we need to traverse these div tags and extract the required rental data. For example, the code to extract the title and other information of the rental information is as follows:

title = info.find("a", class_="t").text
rent = info.find("b").text
size = info.find_all("p")[0].text.split("/")[1]
address = info.find_all("p")[0].text.split("/")[0]
house_type = info.find_all("p")[1].text
Copy after login

Through the above code, we have successfully obtained each piece of rental information on the 58 city rental page and encapsulated it into variables. Next, by printing the variables of each rental information, you can see the data output on the console. For example:

print("标题:{}".format(title))
print("租金:{}".format(rent))
print("面积:{}".format(size))
print("地理位置:{}".format(address))
print("房屋类型:{}".format(house_type))
Copy after login

3. Summary

This article introduces the actual crawler in Python-58 city crawler. Before the crawler was implemented, we first analyzed the 58 city rental page and determined the URL to obtain rental information and the data that needed to be extracted. Then, the crawler was implemented using requests and BeautifulSoup4 library. Through the crawler, we successfully obtained the rental information of the 58 city rental page and encapsulated it into variables to facilitate subsequent data processing.

The above is the detailed content of Practical crawler combat in Python: 58 city crawler. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Can vs code run in Windows 8 Can vs code run in Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

Can visual studio code be used in python Can visual studio code be used in python Apr 15, 2025 pm 08:18 PM

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

How to run sublime code python How to run sublime code python Apr 16, 2025 am 08:48 AM

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

How to run python with notepad How to run python with notepad Apr 16, 2025 pm 07:33 PM

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

See all articles