How to use JOIN in MySql
The meaning of JOIN is just like the English word "join". It connects two tables and can be roughly divided into inner join, outer join, right join, left join and natural join.
First create two tables, the following are used for examples
CREATE TABLE t_blog( id INT PRIMARY KEY AUTO_INCREMENT, title VARCHAR(50), typeId INT ); SELECT * FROM t_blog; +----+-------+--------+ | id | title | typeId | +----+-------+--------+ | 1 | aaa | 1 | | 2 | bbb | 2 | | 3 | ccc | 3 | | 4 | ddd | 4 | | 5 | eee | 4 | | 6 | fff | 3 | | 7 | ggg | 2 | | 8 | hhh | NULL | | 9 | iii | NULL | | 10 | jjj | NULL | +----+-------+--------+ -- 博客的类别 CREATE TABLE t_type( id INT PRIMARY KEY AUTO_INCREMENT, name VARCHAR(20) ); SELECT * FROM t_type; +----+------------+ | id | name | +----+------------+ | 1 | C++ | | 2 | C | | 3 | Java | | 4 | C# | | 5 | Javascript | +----+------------+
Cartesian product: CROSS JOIN
To understand various JOINs first To understand the Cartesian product. The Cartesian product combines every record in table A with every record in table B. Therefore, when there are n records in table A and m records in table B, the result of the Cartesian product operation will be n*m records. In the following example, t_blog has 10 records, t_type has 5 records, and the Cartesian product of both of them has 50 records. There are five ways to produce a Cartesian product as follows.
SELECT * FROM t_blog CROSS JOIN t_type; SELECT * FROM t_blog INNER JOIN t_type; SELECT * FROM t_blog,t_type; SELECT * FROM t_blog NATURE JOIN t_type; select * from t_blog NATURA join t_type; +----+-------+--------+----+------------+ | id | title | typeId | id | name | +----+-------+--------+----+------------+ | 1 | aaa | 1 | 1 | C++ | | 1 | aaa | 1 | 2 | C | | 1 | aaa | 1 | 3 | Java | | 1 | aaa | 1 | 4 | C# | | 1 | aaa | 1 | 5 | Javascript | | 2 | bbb | 2 | 1 | C++ | | 2 | bbb | 2 | 2 | C | | 2 | bbb | 2 | 3 | Java | | 2 | bbb | 2 | 4 | C# | | 2 | bbb | 2 | 5 | Javascript | | 3 | ccc | 3 | 1 | C++ | | 3 | ccc | 3 | 2 | C | | 3 | ccc | 3 | 3 | Java | | 3 | ccc | 3 | 4 | C# | | 3 | ccc | 3 | 5 | Javascript | | 4 | ddd | 4 | 1 | C++ | | 4 | ddd | 4 | 2 | C | | 4 | ddd | 4 | 3 | Java | | 4 | ddd | 4 | 4 | C# | | 4 | ddd | 4 | 5 | Javascript | | 5 | eee | 4 | 1 | C++ | | 5 | eee | 4 | 2 | C | | 5 | eee | 4 | 3 | Java | | 5 | eee | 4 | 4 | C# | | 5 | eee | 4 | 5 | Javascript | | 6 | fff | 3 | 1 | C++ | | 6 | fff | 3 | 2 | C | | 6 | fff | 3 | 3 | Java | | 6 | fff | 3 | 4 | C# | | 6 | fff | 3 | 5 | Javascript | | 7 | ggg | 2 | 1 | C++ | | 7 | ggg | 2 | 2 | C | | 7 | ggg | 2 | 3 | Java | | 7 | ggg | 2 | 4 | C# | | 7 | ggg | 2 | 5 | Javascript | | 8 | hhh | NULL | 1 | C++ | | 8 | hhh | NULL | 2 | C | | 8 | hhh | NULL | 3 | Java | | 8 | hhh | NULL | 4 | C# | | 8 | hhh | NULL | 5 | Javascript | | 9 | iii | NULL | 1 | C++ | | 9 | iii | NULL | 2 | C | | 9 | iii | NULL | 3 | Java | | 9 | iii | NULL | 4 | C# | | 9 | iii | NULL | 5 | Javascript | | 10 | jjj | NULL | 1 | C++ | | 10 | jjj | NULL | 2 | C | | 10 | jjj | NULL | 3 | Java | | 10 | jjj | NULL | 4 | C# | | 10 | jjj | NULL | 5 | Javascript | +----+-------+--------+----+------------+
Inner join: INNER JOIN
Inner joinINNER JOIN is the most commonly used connection operation. From a mathematical point of view, this is to calculate the intersection of the two tables; from a Cartesian product point of view, it is to filter out the records that meet the conditions of the ON clause from the Cartesian product. There are four writing methods: INNER JOIN, WHERE (equivalent join), STRAIGHT_JOIN, and JOIN (INNER omitted).
SELECT * FROM t_blog INNER JOIN t_type ON t_blog.typeId=t_type.id; SELECT * FROM t_blog,t_type WHERE t_blog.typeId=t_type.id; SELECT * FROM t_blog STRAIGHT_JOIN t_type ON t_blog.typeId=t_type.id; --注意STRIGHT_JOIN有个下划线 SELECT * FROM t_blog JOIN t_type ON t_blog.typeId=t_type.id; +----+-------+--------+----+------+ | id | title | typeId | id | name | +----+-------+--------+----+------+ | 1 | aaa | 1 | 1 | C++ | | 2 | bbb | 2 | 2 | C | | 7 | ggg | 2 | 2 | C | | 3 | ccc | 3 | 3 | Java | | 6 | fff | 3 | 3 | Java | | 4 | ddd | 4 | 4 | C# | | 5 | eee | 4 | 4 | C# | +----+-------+--------+----+------+
Left join: LEFT JOIN
The meaning of left join LEFT JOIN is to find the intersection of two tables plus the remaining data in the left table. Still speaking from the perspective of the Cartesian product, we first select the records for which the ON clause condition is true from the Cartesian product, and then add the remaining records in the left table (see the last three items).
SELECT * FROM t_blog LEFT JOIN t_type ON t_blog.typeId=t_type.id; +----+-------+--------+------+------+ | id | title | typeId | id | name | +----+-------+--------+------+------+ | 1 | aaa | 1 | 1 | C++ | | 2 | bbb | 2 | 2 | C | | 7 | ggg | 2 | 2 | C | | 3 | ccc | 3 | 3 | Java | | 6 | fff | 3 | 3 | Java | | 4 | ddd | 4 | 4 | C# | | 5 | eee | 4 | 4 | C# | | 8 | hhh | NULL | NULL | NULL | | 9 | iii | NULL | NULL | NULL | | 10 | jjj | NULL | NULL | NULL | +----+-------+--------+------+------+
RIGHT JOIN: RIGHT JOIN
Similarly, RIGHT JOIN is to find the intersection of two tables plus the remaining data in the right table. Once again described from the perspective of Cartesian product, the right join is to select the records whose ON clause condition is true from the Cartesian product, and then add the remaining records in the right table (see the last item).
SELECT * FROM t_blog RIGHT JOIN t_type ON t_blog.typeId=t_type.id; +------+-------+--------+----+------------+ | id | title | typeId | id | name | +------+-------+--------+----+------------+ | 1 | aaa | 1 | 1 | C++ | | 2 | bbb | 2 | 2 | C | | 3 | ccc | 3 | 3 | Java | | 4 | ddd | 4 | 4 | C# | | 5 | eee | 4 | 4 | C# | | 6 | fff | 3 | 3 | Java | | 7 | ggg | 2 | 2 | C | | NULL | NULL | NULL | 5 | Javascript | +------+-------+--------+----+------------+
Outer join: OUTER JOIN
Outer join is to find the union of two sets. From the perspective of the Cartesian product, it is to select the records whose ON clause condition is true from the Cartesian product, then add the remaining records in the left table, and finally add the remaining records in the right table. MySQL does not support OUTER JOIN, but we can achieve it by UNIONing the results of the left join and the right join.
SELECT * FROM t_blog LEFT JOIN t_type ON t_blog.typeId=t_type.id UNION SELECT * FROM t_blog RIGHT JOIN t_type ON t_blog.typeId=t_type.id; +------+-------+--------+------+------------+ | id | title | typeId | id | name | +------+-------+--------+------+------------+ | 1 | aaa | 1 | 1 | C++ | | 2 | bbb | 2 | 2 | C | | 7 | ggg | 2 | 2 | C | | 3 | ccc | 3 | 3 | Java | | 6 | fff | 3 | 3 | Java | | 4 | ddd | 4 | 4 | C# | | 5 | eee | 4 | 4 | C# | | 8 | hhh | NULL | NULL | NULL | | 9 | iii | NULL | NULL | NULL | | 10 | jjj | NULL | NULL | NULL | | NULL | NULL | NULL | 5 | Javascript | +------+-------+--------+------+------------+
USING clause
In the connection SQL statement in MySQL, the syntax format of the ON clause is: table1.column_name = table2.column_name. When the schema design adopts the same naming style for the columns of the joined table, the USING syntax can be used to simplify the ON syntax, in the format: USING(column_name).
So, the function of USING is equivalent to ON. The difference is that USING specifies an attribute name to connect two tables, while ON specifies a condition. In addition, when SELECT *, USING will remove the columns specified by USING, but ON will not. Examples are as follows.
SELECT * FROM t_blog INNER JOIN t_type ON t_blog.typeId =t_type.id; +----+-------+--------+----+------+ | id | title | typeId | id | name | +----+-------+--------+----+------+ | 1 | aaa | 1 | 1 | C++ | | 2 | bbb | 2 | 2 | C | | 7 | ggg | 2 | 2 | C | | 3 | ccc | 3 | 3 | Java | | 6 | fff | 3 | 3 | Java | | 4 | ddd | 4 | 4 | C# | | 5 | eee | 4 | 4 | C# | +----+-------+--------+----+------+ SELECT * FROM t_blog INNER JOIN t_type USING(typeId); ERROR 1054 (42S22): Unknown column 'typeId' in 'from clause' SELECT * FROM t_blog INNER JOIN t_type USING(id); -- 应为t_blog的typeId与t_type的id不同名,无法用Using,这里用id代替下。 +----+-------+--------+------------+ | id | title | typeId | name | +----+-------+--------+------------+ | 1 | aaa | 1 | C++ | | 2 | bbb | 2 | C | | 3 | ccc | 3 | Java | | 4 | ddd | 4 | C# | | 5 | eee | 4 | Javascript | +----+-------+--------+------------+
Natural join: NATURE JOIN
Natural join is a simplified version of the USING clause. It finds the same columns in the two tables and uses them as join conditions to join. There are left natural joins, right natural joins and ordinary natural joins. In the t_blog and t_type examples, the same column in the two tables is id, so id will be used as the connection condition.
In addition, be sure to distinguish the differences between the following three statements.
NATURAL JOIN: SELECT * FROM t_blog NATURAL JOIN t_type;
Descartes product: SELECT * FROM t_blog NATURA JOIN t_type;
Descartes product: SELECT * FROM t_blog NATURE JOIN t_type;
SELECT * FROM t_blog NATURAL JOIN t_type; SELECT t_blog.id,title,typeId,t_type.name FROM t_blog,t_type WHERE t_blog.id=t_type.id; SELECT t_blog.id,title,typeId,t_type.name FROM t_blog INNER JOIN t_type ON t_blog.id=t_type.id; SELECT t_blog.id,title,typeId,t_type.name FROM t_blog INNER JOIN t_type USING(id); +----+-------+--------+------------+ | id | title | typeId | name | | 1 | aaa | 1 | C++ | | 2 | bbb | 2 | C | | 3 | ccc | 3 | Java | | 4 | ddd | 4 | C# | | 5 | eee | 4 | Javascript | SELECT * FROM t_blog NATURAL LEFT JOIN t_type; SELECT t_blog.id,title,typeId,t_type.name FROM t_blog LEFT JOIN t_type ON t_blog.id=t_type.id; SELECT t_blog.id,title,typeId,t_type.name FROM t_blog LEFT JOIN t_type USING(id); | 6 | fff | 3 | NULL | | 7 | ggg | 2 | NULL | | 8 | hhh | NULL | NULL | | 9 | iii | NULL | NULL | | 10 | jjj | NULL | NULL | SELECT * FROM t_blog NATURAL RIGHT JOIN t_type; SELECT t_blog.id,title,typeId,t_type.name FROM t_blog RIGHT JOIN t_type ON t_blog.id=t_type.id; SELECT t_blog.id,title,typeId,t_type.name FROM t_blog RIGHT JOIN t_type USING(id); +----+------------+-------+--------+ | id | name | title | typeId | | 1 | C++ | aaa | 1 | | 2 | C | bbb | 2 | | 3 | Java | ccc | 3 | | 4 | C# | ddd | 4 | | 5 | Javascript | eee | 4 |
The above is the detailed content of How to use JOIN in MySql. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

MySQL is an open source relational database management system, mainly used to store and retrieve data quickly and reliably. Its working principle includes client requests, query resolution, execution of queries and return results. Examples of usage include creating tables, inserting and querying data, and advanced features such as JOIN operations. Common errors involve SQL syntax, data types, and permissions, and optimization suggestions include the use of indexes, optimized queries, and partitioning of tables.

MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

MySQL is chosen for its performance, reliability, ease of use, and community support. 1.MySQL provides efficient data storage and retrieval functions, supporting multiple data types and advanced query operations. 2. Adopt client-server architecture and multiple storage engines to support transaction and query optimization. 3. Easy to use, supports a variety of operating systems and programming languages. 4. Have strong community support and provide rich resources and solutions.

Apache connects to a database requires the following steps: Install the database driver. Configure the web.xml file to create a connection pool. Create a JDBC data source and specify the connection settings. Use the JDBC API to access the database from Java code, including getting connections, creating statements, binding parameters, executing queries or updates, and processing results.

The process of starting MySQL in Docker consists of the following steps: Pull the MySQL image to create and start the container, set the root user password, and map the port verification connection Create the database and the user grants all permissions to the database

The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

Laravel is a PHP framework for easy building of web applications. It provides a range of powerful features including: Installation: Install the Laravel CLI globally with Composer and create applications in the project directory. Routing: Define the relationship between the URL and the handler in routes/web.php. View: Create a view in resources/views to render the application's interface. Database Integration: Provides out-of-the-box integration with databases such as MySQL and uses migration to create and modify tables. Model and Controller: The model represents the database entity and the controller processes HTTP requests.

The key to installing MySQL elegantly is to add the official MySQL repository. The specific steps are as follows: Download the MySQL official GPG key to prevent phishing attacks. Add MySQL repository file: rpm -Uvh https://dev.mysql.com/get/mysql80-community-release-el7-3.noarch.rpm Update yum repository cache: yum update installation MySQL: yum install mysql-server startup MySQL service: systemctl start mysqld set up booting
