golang compression method
golang is a very popular high-performance programming language with relatively powerful code execution capabilities, and its standard library also has many methods for processing various file compression formats. This article will introduce the use of golang compression method.
First you need to introduce the "compress" and "archive" packages, which are compression processing related packages in the golang standard library. But which one to choose depends on the compression format.
- gzip compression
The method of gzip compression in golang also uses the "compress/gzip" package in the standard library.
Here we take a string as an example for compression:
package main import ( "bytes" "compress/gzip" "fmt" ) func main() { str := "golang gzip test" var buf bytes.Buffer z := gzip.NewWriter(&buf) _, err := z.Write([]byte(str)) if err != nil { panic(err) } err = z.Close() if err != nil { panic(err) } fmt.Println("gzip:", buf.String()) }
In this code, a buffer cache is first created, then a gzip.Write object is created, and the buffer is passed to this object. Then, write the string that needs to be compressed into this object, and finally close the writer object.
The print result is: gzip: �▒H-IM0189WVnV-I�HI�J-.�V�R,Q�P.�-NMV-.WVN��O�,�R��S �Q�L��KՅ_(�з)_/�
- zlib compression
zlib is a lossless data compression format that uses the Lempel-Ziv algorithm and Huffam coding. It has a relatively high compression rate and a relatively fast compression speed, and can be used in certain data transmission and storage scenarios.
The method of zlib compression in golang also uses the "compress/zlib" package in the standard library.
Here we take a string as an example for compression:
package main import ( "bytes" "compress/zlib" "fmt" ) func main() { str := "golang zlib test" var buf bytes.Buffer w := zlib.NewWriter(&buf) _, err := w.Write([]byte(str)) if err != nil { panic(err) } err = w.Close() if err != nil { panic(err) } fmt.Println("zlib:", buf.String()) }
In this code, a buffer cache is first created, then a zlib.Write object is created, and the buffer is passed to this object. Then, write the string that needs to be compressed into this object, and finally close the writer object.
The print result is: zlib: x�� ��J-.N�(,�QP.I,�M-V-.Q�
- tar compression
tar is an archive file format that is often used to package multiple files or directories into one file. To perform tar compression in golang, you can use the "archive/tar" package in the standard library.
Here we take tar compression of a directory as an example:
package main import ( "archive/tar" "fmt" "io" "os" ) func tarPath(dst, src string) error { info, err := os.Stat(src) if err != nil { return err } // 如果源目录是一个文件,直接对这个文件进行压缩 if !info.IsDir() { srcFile, err := os.Open(src) if err != nil { return err } defer srcFile.Close() dstFile, err := os.Create(dst + ".tar") if err != nil { return err } defer dstFile.Close() tarWriter := tar.NewWriter(dstFile) defer tarWriter.Close() hdr := &tar.Header { Name: src, Mode: int64(info.Mode()), Size: info.Size(), } if err := tarWriter.WriteHeader(hdr); err != nil { return err } if _, err := io.Copy(tarWriter, srcFile); err != nil { return err } fmt.Println("tar file created:", dst+".tar") return nil } // 如果源目录是一个文件夹,先遍历源目录 files, err := os.ReadDir(src) if err != nil { return err } for _, file := range files { fileName := file.Name() // 这里需要再次判断是否是一个目录 if file.IsDir() { fmt.Println("skipping directory:", fileName) continue } srcFile, err := os.Open(filepath.Join(src, fileName)) if err != nil { return err } defer srcFile.Close() dstFile, err := os.Create(filepath.Join(dst, fileName) + ".tar") if err != nil { return err } defer dstFile.Close() tarWriter := tar.NewWriter(dstFile) defer tarWriter.Close() hdr := &tar.Header { Name: fileName, Mode: int64(file.Mode()), Size: file.Size(), } if err := tarWriter.WriteHeader(hdr); err != nil { return err } if _, err := io.Copy(tarWriter, srcFile); err != nil { return err } fmt.Println("tar file created:", filepath.Join(dst, fileName)+".tar") } return nil } func main() { srcPath := "./testdir" dstPath := "./" err := tarPath(dstPath, srcPath) if err != nil { fmt.Println(err) } }
In this code, the source path is first judged. If it is a file, it will be compressed and saved directly; if is a folder, then traverse all the files in it and compress and save each file, and package and compress all files.
- zip Compression
zip Yes An archive file format, which is usually used to package a set of files or directories into one file, and also compress these files. To perform zip compression in golang, you can use "archive/zip" in the standard library package.
Here we take zip compression of two files as an example:
package main import ( "archive/zip" "fmt" "io" "os" ) func zipFiles(dst string, files []string) error { newZipFile, err := os.Create(dst + ".zip") if err != nil { return err } defer newZipFile.Close() zipWriter := zip.NewWriter(newZipFile) defer zipWriter.Close() for _, file := range files { srcFile, err := os.Open(file) if err != nil { return err } defer srcFile.Close() info, _ := srcFile.Stat() header, err := zip.FileInfoHeader(info) if err != nil { return err } header.Name = file header.Method = zip.Deflate writer, err := zipWriter.CreateHeader(header) if err != nil { return err } if _, err := io.Copy(writer, srcFile); err != nil { return err } } fmt.Println("zip file created:", dst+".zip") return nil } func main() { files := []string{"test.txt", "test1.txt"} dstPath := "./" err := zipFiles(dstPath, files) if err != nil { fmt.Println(err) } }
In this code, it mainly traverses the list of files that need to be compressed and adds them one by one to in the compressed package.
Summary
golang has corresponding processing libraries for various compression formats, which greatly facilitates the file compression processing process. Here are only a few popular ones. How to deal with file compression methods.
The above is the detailed content of golang compression method. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

The difference between string printing in Go language: The difference in the effect of using Println and string() functions is in Go...

This article introduces a variety of methods and tools to monitor PostgreSQL databases under the Debian system, helping you to fully grasp database performance monitoring. 1. Use PostgreSQL to build-in monitoring view PostgreSQL itself provides multiple views for monitoring database activities: pg_stat_activity: displays database activities in real time, including connections, queries, transactions and other information. pg_stat_replication: Monitors replication status, especially suitable for stream replication clusters. pg_stat_database: Provides database statistics, such as database size, transaction commit/rollback times and other key indicators. 2. Use log analysis tool pgBadg

Under the BeegoORM framework, how to specify the database associated with the model? Many Beego projects require multiple databases to be operated simultaneously. When using Beego...

The problem of using RedisStream to implement message queues in Go language is using Go language and Redis...
