


How to use performance testing tools such as python function running memory time
Basic test function
First, write a basic python function for various performance tests later.
def base_func(): for n in range(10000): print('当前n的值是:{}'.format(n))
memory_profiler process
memory_profiler is a non-standard library of python, so pip is used to install it here. It can monitor processes, understand memory usage, and more.
pip install memory_profiler
After installing the memory_profiler library, directly use annotations to test.
from memory_profiler import profile @profile def base_func1(): for n in range(10000): print('当前n的值是:{}'.format(n)) base_func1() # Line # Mem usage Increment Occurrences Line Contents # ============================================================= # 28 45.3 MiB 45.3 MiB 1 @profile # 29 def base_func(): # 30 45.3 MiB 0.0 MiB 10001 for n in range(10000): # 31 45.3 MiB 0.0 MiB 10000 print('当前n的值是:{}'.format(n))
Judging from the returned data results, 45.3 MiB of memory is used to execute the current function.
timeit time usage
Timeit is a built-in module of Python that can test the code running time of a cell. Since it is a built-in module, it does not need to be installed separately.
import timeit def base_func2(): for n in range(10000): print('当前n的值是:{}'.format(n)) res = timeit.timeit(base_func2,number=5) print('当前的函数的运行时间是:{}'.format(res)) # 当前的函数的运行时间是:0.9675800999999993
According to the return result of the above function, the running time of the function is 0.96 seconds.
line_profiler line code detection
If you only need to detect the local running time of the function, you can use line_profiler, which can detect the running time of each line of code.
Line_profiler is a non-standard library of python. Use pip to install it.
pip install line_profiler
The easiest way to use it is to directly add the functions that need to be tested.
def base_func3(): for n in range(10000): print('当前n的值是:{}'.format(n)) from line_profiler import LineProfiler lp = LineProfiler() lp_wrap = lp(base_func3) lp_wrap() lp.print_stats() # Line # Hits Time Per Hit % Time Line Contents # ============================================================== # 72 def base_func3(): # 73 10001 162738.0 16.3 4.8 for n in range(10000): # 74 10000 3207772.0 320.8 95.2 print('当前n的值是:{}'.format(n))
You can see the running time and proportion of each line of code from the running results. Note that the time unit here is subtle.
Heartrate Visual Detection
The most recommended thing about heartrate is that it can detect the execution process of the program on the web page just like detecting heart rate. At the same time, it is also a non-standard library and can be installed using pip.
pip install heartrate
import heartrate heartrate.trace(browser=True) def base_func4(): for n in range(10000): print('当前n的值是:{}'.format(n))
After running, the console prints the following log:
# * Serving Flask app "heartrate.core" (lazy loading) # * Environment: production # WARNING: This is a development server. Do not use it in a production deployment. # Use a production WSGI server instead. # * Debug mode: off
and automatically opens the browser address: http://127.0.0.1:9999
The above is the detailed content of How to use performance testing tools such as python function running memory time. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.
