How to implement Halbert transform using Python?
1. What is the Hilbert transform?
The Hilbert transform was initially only defined for periodic functions (that is, functions on a circle). In this case, it is the same as the Hilbert transform. Special kernel convolution. More commonly, however, for functions defined on the real straight line R (the boundary of the upper half-plane), the Hilbert transform is convolved with a Cauchy kernel. The Hilbert transform is closely related to the Parley-Wiener theorem, which is another method that links the holomorphic function in the upper half-plane and the Fourier transform of the function on the real line. kind of result.
2. Implementation principles and code examples in VC
Hilbert transform can be implemented in VC through fast Fourier transform (FFT).
The following is a simple C code to implement the Hilbert transform, which requires the use of the standard library of C 11 and above. First we need to implement an FFT function, and then use the FFT function to implement the Hilbert transform.
#include <iostream> #include <cmath> #include <complex> #include <vector> using namespace std; typedef complex<double> Complex; typedef vector<Complex> ComplexVector; // 快速傅里叶变换 void fft(ComplexVector& data) { int n = data.size(); if (n <= 1) { return; } // 分离偶数项和奇数项 ComplexVector even(n/2), odd(n/2); for (int i = 0; i < n; i += 2) { even[i/2] = data[i]; odd[i/2] = data[i+1]; } // 递归计算偶数项和奇数项的FFT fft(even); fft(odd); // 计算每个k点的DFT for (int k = 0; k < n/2; k++) { Complex t = polar(1.0, -2 * M_PI * k / n) * odd[k]; data[k] = even[k] + t; data[k+n/2] = even[k] - t; } } // 希尔伯特变换 void hilbertTransform(ComplexVector& signal) { int n = signal.size(); // 扩展信号长度至2的幂次方 int n2 = 1; while (n2 < n) { n2 *= 2; } signal.resize(n2); // 进行FFT变换 fft(signal); // 对FFT结果进行处理 for (int i = 1; i < n; i++) { signal[i] *= 2; } for (int i = n; i < n2; i++) { signal[i] = 0; } signal[0] = 1; signal[n] = 0; // 反向FFT变换 fft(signal); for (int i = 0; i < n; i++) { signal[i] = signal[i].imag() / n; } } int main() { ComplexVector signal = {1, 2, 3, 4, 5, 6, 7, 8}; hilbertTransform(signal); // 输出结果 for (int i = 0; i < signal.size(); i++) { cout << signal[i] << " "; } cout << endl; return 0; }
In the above code, we first implement a fast Fourier transform function fft, and then use FFT to calculate the Hilbert transform in the hilbertTransform function. In the calculation process of the Hilbert transform, we first extended the length of the signal, then performed the FFT transform, then processed the FFT results according to the formula of the Hilbert transform, and finally performed the inverse FFT transform to obtain The final Hilbert transform result.
In the above code, we use the complex type complex and the vector type vector to conveniently process signals and FFT results. In practical applications, we can read the input signal from a file or obtain it from real-time collected data, and then call the hilbertTransform function to perform Hilbert transformation to obtain the transformed signal.
3. Use Python code to implement
Hilbert transformation can also be easily implemented using Python. The following is a sample code that uses the numpy library to implement the Hilbert transform:
import numpy as np def hilbert_transform(signal): """ 计算希尔伯特变换 """ n = len(signal) # 扩展信号长度至2的幂次方 n2 = 1 while n2 < n: n2 *= 2 signal = np.append(signal, np.zeros(n2 - n)) # 进行FFT变换 spectrum = np.fft.fft(signal) # 对FFT结果进行处理 spectrum[1:n] *= 2 spectrum[n:] = 0 spectrum[0] = 1 spectrum[n] = 0 # 反向FFT变换 hilbert = np.real(np.fft.ifft(spectrum)) hilbert = hilbert[:n] return hilbert if __name__ == "__main__": signal = [1, 2, 3, 4, 5, 6, 7, 8] hilbert = hilbert_transform(signal) # 输出结果 print(hilbert)
In the above code, we first extend the input signal to a power length of 2, and then use the numpy.fft.fft function. FFT transformation, process the FFT result, and finally use the numpy.fft.ifft function to perform the reverse FFT transformation to obtain the Hilbert transform result.
It should be noted that since the results returned by the numpy.fft.fft function are arranged from small to large according to the frequency of the FFT transformation, and the Hilbert transformation is performed in the time domain, so we Certain processing of the FFT results is required to obtain the correct Hilbert transform results. In the above code, we perform a series of processing on the FFT results, including multiplying the amplitude of the non-zero frequency part by 2, setting the frequencies outside the non-zero frequency part to zero, and changing the values of the DC component and Nyquist frequency component respectively. Set to 1 and 0 to get the correct Hilbert transform result.
The above is the detailed content of How to implement Halbert transform using Python?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".
