Table of Contents
1. Clustering algorithms classify data points based on similarities. Grouping into clusters
2. Dimensionality reduction algorithm reduces the dimensionality of data, making it easier to visualize and process
3. Anomaly detection algorithm identifies outliers or abnormal data points
4. Segmentation algorithm divides data into segments or groups
5. Denoising algorithm reduces or removes noise in data
6. Link prediction algorithms predict future connections between data points (e.g., future interactions between two nodes in a network)
7. Reinforcement learning algorithms learn through trial and error
8. Generative models: Algorithms use training data to generate new data
9. Random forest is a machine learning algorithm that can be used for both supervised and unsupervised learning
10. DBSCAN is a density-based clustering algorithm that can be used for unsupervised learning
11. The Apriori algorithm is used to find associations, frequent itemsets and sequential patterns
12. The Eclat algorithm mines frequent item sets from transaction databases and can be used for shopping cart analysis, intrusion detection and text mining.
Home Technology peripherals AI Introduction to the 12 most important algorithms of unsupervised learning and a summary of their use cases

Introduction to the 12 most important algorithms of unsupervised learning and a summary of their use cases

Apr 12, 2023 pm 02:13 PM
machine learning algorithm unsupervised learning


Unsupervised Learning (Unsupervised Learning) is another mainstream machine learning method opposite to supervised learning. Unsupervised learning does not have any data annotation, only the data itself.

Introduction to the 12 most important algorithms of unsupervised learning and a summary of their use cases

There are several types of unsupervised learning algorithms. The following are the 12 most important ones:

1. Clustering algorithms classify data points based on similarities. Grouping into clusters

k-means clustering is a popular clustering algorithm that divides data into k groups.

2. Dimensionality reduction algorithm reduces the dimensionality of data, making it easier to visualize and process

Principal component analysis (PCA) is a dimensionality reduction algorithm that projects data into low dimensions space, PCA can be used to reduce the dimensionality of data to its most important features.

3. Anomaly detection algorithm identifies outliers or abnormal data points

Support vector machines can be used for anomaly detection (example). Anomaly detection algorithms are used to detect abnormal points in data sets. There are many methods of anomaly detection, but most of them can be divided into supervised and unsupervised. Supervised methods require labeled datasets, while unsupervised methods do not.

Unsupervised anomaly detection algorithms are usually based on density estimation, trying to find points outside dense regions in the data space.

A simple method is to calculate the average distance of each point to its k nearest neighbors. Points that are very far from neighboring points are likely to be outliers.

There are also many density-based anomaly detection algorithms, including Local Outlier Factor (LOF) and Support Vector Domain Description (SVDD). These algorithms are more complex than simple k-nearest neighbor methods and can often detect more subtle anomalies. Most anomaly detection algorithms require tuning, such as specifying a parameter to control how sensitive the algorithm is to anomalies. If the parameters are too low, the algorithm may miss some anomalies. If set too high, the algorithm may produce false positives (identifying normal points as abnormal points).

4. Segmentation algorithm divides data into segments or groups

The segmentation algorithm can divide the image into foreground and background.

These algorithms can automatically segment data sets into meaningful groups without the need for human supervision. One of the more well-known algorithms in this field is the k-means algorithm. This algorithm divides data points into k groups by minimizing the sum of squared distances within the group.

Another popular segmentation algorithm is the mean shift algorithm. The algorithm works by iteratively moving each data point toward the center of its local neighborhood. Mean shift is robust to outliers and can handle data sets with uneven density. But running it on large datasets can be computationally expensive.

The Gaussian Mixture Model (GMM) is a probabilistic model that can be used for segmentation. Previously gmm required a lot of computation to train, but recent research advances have made it faster. gmm is very flexible and can be used with any type of data. But they sometimes don't always produce the best results. For simple data sets, k-means is a good choice, while gmm is more suitable for complex data sets. Mean shift can be used in either case, but can be computationally expensive on large data sets.

5. Denoising algorithm reduces or removes noise in data

Wavelet transform can be used for image denoising. But noise can arise from various sources, including data corruption, missing values, and outliers. Denoising algorithms improve the accuracy of unsupervised learning models by reducing the amount of noise in the data.

There are many existing denoising algorithms, including principal component analysis (PCA), independent component analysis (ICA) and non-negative matrix factorization (NMF).

Link prediction can be used to predict who will become a member of a social network friends in. One of the more commonly used link prediction algorithms is the preferential join algorithm, which predicts that two nodes are more likely to be connected if they have many existing connections.

Another popular link prediction algorithm is the local path algorithm, which predicts that two nodes are more likely to be associated if they share a common neighbor. This algorithm can capture the concept of "structural equivalence" and is therefore frequently used in biological networks.

Finally, the random walk with restart algorithm is also a link prediction algorithm that simulates a random walker on the network and restarts the walker at a random node [17]. The probability of a walker arriving at a specific node is then used to measure the likelihood that a connection exists between two nodes.

7. Reinforcement learning algorithms learn through trial and error

Q-learning is an example of a value-based learning algorithm; it is simple to implement and versatile. But Q-learning sometimes converges to suboptimal solutions. Another example is TD learning, which is more computationally demanding than Q-learning, but often leads to better solutions.

8. Generative models: Algorithms use training data to generate new data

Autoencoders are generative models that can be used to create unique images from image datasets. In machine learning, a generative model is a model that captures the statistical properties of a set of data. These models can be used to generate new data, just like the data they were trained on.

Generative models are used for various tasks such as unsupervised learning, data compression and denoising. There are many types of generative models, such as hidden Markov models and Boltzmann machines. Each model has its pros and cons and is suitable for different tasks.

Hidden Markov models are good at modeling sequential data, while Boltzmann machines are better at modeling high-dimensional data. Generative models can be used for unsupervised learning by training them on unlabeled data. Once the model is trained, it can be used to generate new data. This generated data can then be labeled by humans or other machine learning algorithms. This process can be repeated until the generative model learns to generate data that resembles the desired output.

9. Random forest is a machine learning algorithm that can be used for both supervised and unsupervised learning

For unsupervised learning, random forest can find a group of similar entries, identify outliers, and Compress data.

Random forests have been proven to outperform other popular machine learning algorithms (such as support vector machines) for both supervised and unsupervised tasks. Random forests are a powerful tool for unsupervised learning because they can handle high-dimensional data with many features. They also resist overfitting, meaning they generalize well to new data.

10. DBSCAN is a density-based clustering algorithm that can be used for unsupervised learning

It is based on density, that is, the number of points in each region. DBSCAN points points within a group if they are close together and ignores points if they are further apart. DBSCAN has some advantages compared to other clustering algorithms. It can find clusters of different sizes and shapes and does not require the user to specify the number of clusters in advance. Furthermore, DBSCAN is insensitive to outliers, which means it can be used to find data that is not well represented by other datasets. But DBSCAN also has some shortcomings. For example, it may have difficulty finding good clusters in a very noisy data set. The other thing is that DBSCAN requires a density threshold, which may not be applicable to all data sets.

11. The Apriori algorithm is used to find associations, frequent itemsets and sequential patterns

The Apriori algorithm is the first association rule mining algorithm and the most classic algorithm. It works by first finding all frequent itemsets in the data and then using these itemsets to generate rules.

There are many ways to implement the Apriori algorithm, which can be customized for different needs. For example, support and confidence thresholds can be controlled to find different types of rules.

12. The Eclat algorithm mines frequent item sets from transaction databases and can be used for shopping cart analysis, intrusion detection and text mining.

The Eclat algorithm is a depth-first algorithm that uses vertical data representation. , based on the concept lattice theory, the search space (concept lattice) is divided into smaller subspaces (sub-concept lattice) using the prefix-based equivalence relationship.

The above is the detailed content of Introduction to the 12 most important algorithms of unsupervised learning and a summary of their use cases. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

This article will take you to understand SHAP: model explanation for machine learning This article will take you to understand SHAP: model explanation for machine learning Jun 01, 2024 am 10:58 AM

In the fields of machine learning and data science, model interpretability has always been a focus of researchers and practitioners. With the widespread application of complex models such as deep learning and ensemble methods, understanding the model's decision-making process has become particularly important. Explainable AI|XAI helps build trust and confidence in machine learning models by increasing the transparency of the model. Improving model transparency can be achieved through methods such as the widespread use of multiple complex models, as well as the decision-making processes used to explain the models. These methods include feature importance analysis, model prediction interval estimation, local interpretability algorithms, etc. Feature importance analysis can explain the decision-making process of a model by evaluating the degree of influence of the model on the input features. Model prediction interval estimate

Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Jun 03, 2024 pm 01:25 PM

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

Is Flash Attention stable? Meta and Harvard found that their model weight deviations fluctuated by orders of magnitude Is Flash Attention stable? Meta and Harvard found that their model weight deviations fluctuated by orders of magnitude May 30, 2024 pm 01:24 PM

MetaFAIR teamed up with Harvard to provide a new research framework for optimizing the data bias generated when large-scale machine learning is performed. It is known that the training of large language models often takes months and uses hundreds or even thousands of GPUs. Taking the LLaMA270B model as an example, its training requires a total of 1,720,320 GPU hours. Training large models presents unique systemic challenges due to the scale and complexity of these workloads. Recently, many institutions have reported instability in the training process when training SOTA generative AI models. They usually appear in the form of loss spikes. For example, Google's PaLM model experienced up to 20 loss spikes during the training process. Numerical bias is the root cause of this training inaccuracy,

Explainable AI: Explaining complex AI/ML models Explainable AI: Explaining complex AI/ML models Jun 03, 2024 pm 10:08 PM

Translator | Reviewed by Li Rui | Chonglou Artificial intelligence (AI) and machine learning (ML) models are becoming increasingly complex today, and the output produced by these models is a black box – unable to be explained to stakeholders. Explainable AI (XAI) aims to solve this problem by enabling stakeholders to understand how these models work, ensuring they understand how these models actually make decisions, and ensuring transparency in AI systems, Trust and accountability to address this issue. This article explores various explainable artificial intelligence (XAI) techniques to illustrate their underlying principles. Several reasons why explainable AI is crucial Trust and transparency: For AI systems to be widely accepted and trusted, users need to understand how decisions are made

Improved detection algorithm: for target detection in high-resolution optical remote sensing images Improved detection algorithm: for target detection in high-resolution optical remote sensing images Jun 06, 2024 pm 12:33 PM

01 Outlook Summary Currently, it is difficult to achieve an appropriate balance between detection efficiency and detection results. We have developed an enhanced YOLOv5 algorithm for target detection in high-resolution optical remote sensing images, using multi-layer feature pyramids, multi-detection head strategies and hybrid attention modules to improve the effect of the target detection network in optical remote sensing images. According to the SIMD data set, the mAP of the new algorithm is 2.2% better than YOLOv5 and 8.48% better than YOLOX, achieving a better balance between detection results and speed. 02 Background & Motivation With the rapid development of remote sensing technology, high-resolution optical remote sensing images have been used to describe many objects on the earth’s surface, including aircraft, cars, buildings, etc. Object detection in the interpretation of remote sensing images

Machine Learning in C++: A Guide to Implementing Common Machine Learning Algorithms in C++ Machine Learning in C++: A Guide to Implementing Common Machine Learning Algorithms in C++ Jun 03, 2024 pm 07:33 PM

In C++, the implementation of machine learning algorithms includes: Linear regression: used to predict continuous variables. The steps include loading data, calculating weights and biases, updating parameters and prediction. Logistic regression: used to predict discrete variables. The process is similar to linear regression, but uses the sigmoid function for prediction. Support Vector Machine: A powerful classification and regression algorithm that involves computing support vectors and predicting labels.

Application of algorithms in the construction of 58 portrait platform Application of algorithms in the construction of 58 portrait platform May 09, 2024 am 09:01 AM

1. Background of the Construction of 58 Portraits Platform First of all, I would like to share with you the background of the construction of the 58 Portrait Platform. 1. The traditional thinking of the traditional profiling platform is no longer enough. Building a user profiling platform relies on data warehouse modeling capabilities to integrate data from multiple business lines to build accurate user portraits; it also requires data mining to understand user behavior, interests and needs, and provide algorithms. side capabilities; finally, it also needs to have data platform capabilities to efficiently store, query and share user profile data and provide profile services. The main difference between a self-built business profiling platform and a middle-office profiling platform is that the self-built profiling platform serves a single business line and can be customized on demand; the mid-office platform serves multiple business lines, has complex modeling, and provides more general capabilities. 2.58 User portraits of the background of Zhongtai portrait construction

See all articles