基于用户的推荐算法余弦相似性实现
1. [文件] cosine.py
#-*- coding: utf-8 -*- ''' Created on 2012-9-3 @author: Jekey 余弦相关性,如果数据稀疏,考虑使用该算法 ''' import codecs from math import sqrt users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0, "Norah Jones": 4.5, "Phoenix": 5.0, "Slightly Stoopid": 1.5, "The Strokes": 2.5, "Vampire Weekend": 2.0}, "Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5, "Deadmau5": 4.0, "Phoenix": 2.0, "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0}, "Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0, "Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5, "Slightly Stoopid": 1.0}, "Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0, "Deadmau5": 4.5, "Phoenix": 3.0, "Slightly Stoopid": 4.5, "The Strokes": 4.0, "Vampire Weekend": 2.0}, "Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0, "Norah Jones": 4.0, "The Strokes": 4.0, "Vampire Weekend": 1.0}, "Jordyn": {"Broken Bells": 4.5, "Deadmau5": 4.0, "Norah Jones": 5.0, "Phoenix": 5.0, "Slightly Stoopid": 4.5, "The Strokes": 4.0, "Vampire Weekend": 4.0}, "Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0, "Norah Jones": 3.0, "Phoenix": 5.0, "Slightly Stoopid": 4.0, "The Strokes": 5.0}, "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0, "Phoenix": 4.0, "Slightly Stoopid": 2.5, "The Strokes": 3.0} } #cosine 距离 def cosine(rate1,rate2): sum_xy = 0 sum_x=0 sum_y=0 n=0 for key in rate1: if key in rate2: n+=1 x=rate1[key] y=rate2[key] sum_xy += x*y sum_x +=x*x sum_y +=y*y #计算距离 if n==0: return 0 else: sx=pow(sum_x,1/2) sy=pow(sum_y,1/2) if sum_xy<>0: denominator=sx*sy/sum_xy else: denominator=0 return denominator #返回最近距离用户 def computeNearestNeighbor(username,users): distances = [] for key in users: if key<>username: distance = cosine(users[username],users[key]) distances.append((distance,key)) distances.sort() return distances #推荐 def recommend(username,users): #获得最近用户的name nearest = computeNearestNeighbor(username,users)[0][1] recommendations =[] #得到最近用户的推荐列表 neighborRatings = users[nearest] for key in neighborRatings: if not key in users[username]: recommendations.append((key,neighborRatings[key])) recommendations.sort(key=lambda rat:rat[1], reverse=True) return recommendations if __name__ == '__main__': print recommend('Hailey', users)
Copy after login
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article
Assassin's Creed Shadows: Seashell Riddle Solution
1 months ago
By DDD
What's New in Windows 11 KB5054979 & How to Fix Update Issues
3 weeks ago
By DDD
Where to find the Crane Control Keycard in Atomfall
1 months ago
By DDD
How to fix KB5055523 fails to install in Windows 11?
2 weeks ago
By DDD
InZoi: How To Apply To School And University
3 weeks ago
By DDD

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)
