What is the difference between B-Tree index and Hash index in MySQL?
The difference between B-Tree index and Hash index in MySQL: 1. B-Tree index supports the leftmost prefix matching principle, but Hash index does not support it; 2. Both MyISAM and InnoDB support B- Tree index, while Hash index is only supported by Memory and NDB engine indexes.
Hash index
The particularity of the Hash index structure, its retrieval efficiency is very high, and the index retrieval can be done once Positioning, unlike the B-Tree index, which requires multiple IO accesses from the root node to the branch node, and finally to the page node, so the query efficiency of the Hash index is much higher than that of the B-Tree index.
Many people may have questions again. Since the efficiency of Hash index is much higher than that of B-Tree, why don't everyone use Hash index but also use B-Tree index? Everything has two sides, and the same goes for Hash indexes. Although Hash indexes are highly efficient, the Hash indexes themselves also bring many limitations and disadvantages due to their particularity, mainly as follows.
(1) Hash index can only satisfy "=","IN" and "<=>" queries, and range queries cannot be used.
Since the Hash index compares the Hash value after Hash operation, it can only be used for equal value filtering and cannot be used for range-based filtering, because the Hash value after processing by the corresponding Hash algorithm The size relationship is not guaranteed to be exactly the same as before the Hash operation.
(2) Hash index cannot be used to avoid data sorting operations.
Since the Hash index stores the Hash value after Hash calculation, and the size relationship of the Hash value is not necessarily exactly the same as the key value before the Hash operation, so the database cannot use the index data to avoid any Sorting operation;
(3) Hash index cannot be queried using part of the index key.
For the combined index, when the Hash index calculates the Hash value, the combined index keys are merged and then the Hash value is calculated together, instead of calculating the Hash value separately, so the previous one or several index keys of the combined index are used. When querying, the Hash index cannot be used.
(4) Hash index cannot avoid table scan at any time.
As we know before, Hash index is to store the Hash value of the Hash operation result and the corresponding row pointer information in a Hash table after Hash operation is performed on the index key. Since different index keys have the same Hash value , so even if you get the number of records that satisfy a certain Hash key value, you cannot directly complete the query from the Hash index. You still have to make corresponding comparisons by accessing the actual data in the table and get the corresponding results.
(5) When a Hash index encounters a large number of equal hash values, its performance will not necessarily be higher than that of the B-Tree index.
For index keys with low selectivity, if you create a Hash index, there will be a large number of record pointer information stored in the same Hash value. In this way, it will be very troublesome to locate a certain record, and it will waste multiple accesses to the table data, resulting in low overall performance.
B-Tree index
B-Tree index is the most frequently used index type in the MySQL database. All other storage engines except the Archive storage engine are Supports B-Tree indexes. This is not only true in MySQL, but in fact in many other database management systems, B-Tree index is also the most important index type. This is mainly because the storage structure of B-Tree index plays an important role in the data inspection of the database.
Suo Zhong has a very good performance.
Generally speaking, most of the physical files of the B-Tree index in MySQL are stored in the Balance Tree structure, that is, all the actual required data is stored in the Leaf Node of the Tree and can be accessed anywhere. The length of the shortest path of a Leaf Node is exactly the same, so we all call it a B-Tree index. Of course, various databases (or various storage engines of MySQL) may store their own B-Tree indexes. The storage structure will be slightly modified. For example, the actual storage structure used by the B-Tree index of the Innodb storage engine is actually a B Tree, which is a very small modification based on the B-Tree data structure, on each
Leaf Node. In addition to storing the relevant information of the index key, the pointer information pointing to the next LeafNode adjacent to the Leaf Node is also stored. This is mainly to speed up the efficiency of retrieving multiple adjacent Leaf Nodes.
Recommended tutorial: "MySQL Tutorial"
The above is the detailed content of What is the difference between B-Tree index and Hash index in MySQL?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

MySQL is an open source relational database management system, mainly used to store and retrieve data quickly and reliably. Its working principle includes client requests, query resolution, execution of queries and return results. Examples of usage include creating tables, inserting and querying data, and advanced features such as JOIN operations. Common errors involve SQL syntax, data types, and permissions, and optimization suggestions include the use of indexes, optimized queries, and partitioning of tables.

MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

Apache connects to a database requires the following steps: Install the database driver. Configure the web.xml file to create a connection pool. Create a JDBC data source and specify the connection settings. Use the JDBC API to access the database from Java code, including getting connections, creating statements, binding parameters, executing queries or updates, and processing results.

MySQL is chosen for its performance, reliability, ease of use, and community support. 1.MySQL provides efficient data storage and retrieval functions, supporting multiple data types and advanced query operations. 2. Adopt client-server architecture and multiple storage engines to support transaction and query optimization. 3. Easy to use, supports a variety of operating systems and programming languages. 4. Have strong community support and provide rich resources and solutions.

The process of starting MySQL in Docker consists of the following steps: Pull the MySQL image to create and start the container, set the root user password, and map the port verification connection Create the database and the user grants all permissions to the database

The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

Laravel is a PHP framework for easy building of web applications. It provides a range of powerful features including: Installation: Install the Laravel CLI globally with Composer and create applications in the project directory. Routing: Define the relationship between the URL and the handler in routes/web.php. View: Create a view in resources/views to render the application's interface. Database Integration: Provides out-of-the-box integration with databases such as MySQL and uses migration to create and modify tables. Model and Controller: The model represents the database entity and the controller processes HTTP requests.

The key to installing MySQL elegantly is to add the official MySQL repository. The specific steps are as follows: Download the MySQL official GPG key to prevent phishing attacks. Add MySQL repository file: rpm -Uvh https://dev.mysql.com/get/mysql80-community-release-el7-3.noarch.rpm Update yum repository cache: yum update installation MySQL: yum install mysql-server startup MySQL service: systemctl start mysqld set up booting
