Is python useful in finance?
Python programmers are in high demand among banks and hedge funds. Fortunately, the language is easy to learn - it is often used in British primary schools to teach the basics of programming. However, before you encounter Python for the first time, there are a few things you should know - especially if you want to use it in a financial context.
Python is a programming language that has a huge reputation in the financial industry. The largest investment banks and hedge funds are using it to build a wide range of financial applications, including core trading projects and risk management systems. (Recommended learning: Python video tutorial)
The functions are not included, but there are libraries
You also need to know the core Python The library is very lightweight. If you want to do anything interesting, you need to import prepackaged libraries. These libraries contain functions to perform most mathematical operations, import and process data, and perform common system tasks.
However, the true power of Python comes when you start downloading the many third-party libraries that are freely available. For finance work, you'll need numpy (handles operations on large arrays), scipy (advanced statistical and mathematical functions), and matplotlib (data visualization). Data scientists interested in machine learning may want to look into tensorflow. Pandas is a necessity for data manipulation - it was originally developed at the management of giant hedge fund AQR Capital.
Users may wish to view the Anaconda distribution in a neat pre-packaged environment, which includes all the above packages and more.
Python is slow. But it's easy to mix it with C
Programmers who are used to the lightning speed of C or C++, or those who are relatively fast in Julia or Java, will find Python a bit sluggish (although it's still faster than R and Matlab are faster, both are popular languages in quantitative finance).
Programmers like to brag about how quick and fast their code is, but most code doesn't have to be fast. However, Python will definitely be too slow for functions that are run repeatedly on large data sets or latency-sensitive trading algorithms.
Luckily, it's very easy to write fast C or C++ functions and then embed them into Python modules. Learn how to do this.
Python loves big data
Financial companies looking to gain an edge in today’s market are looking to new sources of data. These alternative data sources have one thing in common - they're big. Using Twitter feed data to predict market sentiment is a cool idea, but there are about 500 million new tweets every day. This requires large amounts of data to be stored, processed and analyzed.
Fortunately, Python fits well into the big data ecosystem, with packages available for interacting with Spark and Hadoop. Python also provides APIs for NoSQL databases such as MongoDB, and provides APIs for all major cloud storage providers.
Don’t be afraid of the GIL
The GI is notoriously Python’s Achilles’ heel. The interpreter can only execute one thread at any time, creating a bottleneck that slows down execution and does not take advantage of modern multi-core CPUs. However, GIL rarely causes problems in practice. Most real-world programs spend more time waiting for input or output.
The GIL affects large, computationally intensive operations, but only a masochist would try to run them on a desktop or laptop. It makes more sense to parallelize the code and then distribute it to a local cluster or cloud computing provider.
The above is the detailed content of Is python useful in finance?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".
