How to draw precipitation map in python
Python can quickly solve small tasks in daily work, such as data display. For data display in Python, the matplotlib library is mainly used. Using simple codes, you can easily draw line charts, bar charts, etc. Using Java, etc., you may also need to cooperate with html for display, which is very cumbersome.
Drawing codes for various floor plans:
''' File Name: draw Description: 图形绘制。十分有用,对于工作中实验性的项目,可以快速展示效果。如果使用java,还需要配合前端展示。 ''' import matplotlib.pyplot as plt import numpy as np # 模块取别名 # 直方图 def draw_hist(): mu = 100 sigma = 20 x = mu + sigma * np.random.randn(20000) # 样本数量 plt.hist(x, bins=100, color='green', normed=True) # bins:显示有几个直方,normed是否对数据进行标准化 plt._show() # 条形图 def draw_bar(): y = [20, 10, 30, 25, 15] # Y轴数据 index = np.arange(5) # X轴数据,也可以是index = [0,5] plt.bar(left=index, height=y, color='blue', width=0.5) plt.show() # 折线图 def draw_plot(): x = np.linspace(-10, 10, 100) # -10到10,100个点 y = x ** 3 # x的3次幂 plt.plot(x, y, linestyle='--', color='orange', marker='<') plt.xlabel('X') plt.ylabel('Y') plt.show() # 散点图 def draw_scatter(): x = np.random.randn(1000) y = x + np.random.randn(1000) * 0.5 plt.scatter(x, y, s=5, marker='<') # s表示面积,marker表示图形 plt.show() # 饼状图 def draw_pie(): labels = 'A', 'B', 'C', 'D' # 4个模块 fracs = [15, 30, 45, 10] # 每个模块占比例 plt.axes(aspect=1) # 使x、y轴比例相同 explode = [0, 0.5, 0, 0] # 突出某一部分区域 plt.pie(x=fracs, labels=labels, autopct='%.0f%%', explode=explode) # autopct显示百分比 plt.show() # 带图例 def draw_with_legend(): x = np.arange(1, 11, 1) # x轴坐标,1开始,11结束,步长为1 plt.plot(x, x * 2) # 第一条线,x,y坐标 plt.plot(x, x * 3) plt.plot(x, x * 4) plt.legend(['Normal', 'Fast', 'Faster']) # 设置图例,与上面的线对应 plt.grid(True, color='green', linestyle='--', linewidth=1) # 绘制网格 plt.show() # start if __name__ == '__main__': # draw_hist() # draw_bar() draw_plot() # draw_scatter() # draw_pie() # draw_with_legend()
Drawing codes for 3D drawings:
''' File Name: draw_3d Description: 3D绘图 ''' import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # 3D 绘制 def draw_3D(): fig = plt.figure() # 定义一个窗口 ax = Axes3D(fig) # 绘制3D坐标 # 设置x、y、z的值 x = np.arange(-4, 4, 0.25) y = np.arange(-4, 4, 0.25) x, y = np.meshgrid(x, y) # x-y 平面的网格 r = np.sqrt(x ** 2 + y ** 2) z = np.sin(r) # z值 # 做出一个三维曲面,并将一个 colormap rainbow 填充颜色,之后将三维图像投影到 XY 平面上做一个等高线图 # rstride 和 cstride 分别代表 row 和 column 的跨度。 ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap=plt.get_cmap('rainbow')) # 添加 XY 平面的等高线 ax.contourf(x, y, z, zdir='z', offset=-2, cmap=plt.get_cmap('rainbow')) ax.set_zlim(-2, 2) plt.show() # 展示 # start if __name__ == '__main__': draw_3D()
The above is the detailed content of How to draw precipitation map in python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.
