


Using python to implement high-performance testing tools (1)
People who have been developing or testing developers for several years often feel confused. The development of new functions or the maintenance of old functions are basically piles of code. This article mainly talks about performance optimization in system design and architecture for everyone to learn. Some of the content involves specific products, some changes have been made, or test code demonstrations have been written separately.
Project background:
Implement a high-performance diameter test tool, accept 1000 and send 1000, and support up to 2000 messages per second in both directions. The source code of the diameter protocol is downloaded from http://sourceforge.net/projects/pyprotosim/. This open source package also supports SMPP, RADIUS, DHCP, LDAP, and the newly added protocol fields can be configured in the dictionary. It is really convenient if you need to modify the code. In the initial stage, in order to implement functions, we did not consider performance issues. Single threads were used in many places, and the initial performance could only support 50 messages. Hardware environment: SunFire 4170, 16 cores, 2.4 G per core
Several directions for Python performance optimization:
1. Change the python parser: Common python parsers include pysco, pypy, cython, jython and pysco no longer support python 2.7, so there is no test. It is said that it runs as fast as C language. I did a simple test on pypy and jython. pypy can be improved to 5-10 times on different machines. Although Jython can avoid the problem of python GIL (because jython runs on a java virtual machine), it seems from the test that Efficiency gains are minimal.
2. Optimize the code
3. Change the system architecture, multi-threading, multi-process or coroutine
Solution 1 : Changing the Python parser
If changing the Python parser can meet the performance requirements, it is the cheapest solution and does not require any changes to the code. The following code is just to illustrate the effect of pypy. It is a test code written separately and the result of running under windows. The running effect will be better on a Linux machine.
#!/usr/bin/env python #coding=utf-8 import time def check(num): a = list(str(num)) b = a[::-1] if a == b: return True return False def test(): all = xrange(1,10**7) for i in all: if check(i): if check(i**2): i**2 if __name__ == '__main__': start=time.time() test() print time.time()-start
The results of using python and pypy respectively
C:\Python27\python.exeD:/RCC/mp/src/test.py
14.4940001965
C:\pypy-2.1\pypy.exeD:/RCC/mp/src/test.py
4.37800002098
You can see the running results of pypy The effect is still obvious, although it can be increased by 5 times (on a Linux machine), 50*5, which is still far from 2000. pypy has no obvious effect on python multi-threading support, which will be mentioned later.
Let’s end it first. It’s too long and everyone seems tired. The next article will introduce the code optimization part.
[Recommended course: Python video tutorial]
The above is the detailed content of Using python to implement high-performance testing tools (1). For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.
