Detailed explanation of PHP inter-process communication
A process is a running activity of a program with independent functions on a certain data collection. In other words, it is the basic unit of a program when the system schedules multiple CPUs. Process is not an unfamiliar concept to most languages, and as "the best language in the world, PHP" is certainly an exception.
Environment
The process in php is completed in the form of expansion. Through these extensions, we can easily complete a series of actions in the process.
pcntl extension: The main process extension, the completion process is created in the waiting operation.
posix extension: Complete common APIs for POSIX compatible machines, such as getting process id, killing processes, etc.
sysvmsg extension: message queue that implements system v inter-process communication.
sysvsem extension: implements the system v semaphore.
sysvshm extension: implements shared memory in system v mode.
sockets extension: implements socket communication.
These extensions can only be used in linux/mac, and are not supported under windows. Finally, it is recommended that the PHP version is 5.5+.
Simple example
A simple PHP multi-process example. In this example, there is a child process and a parent process. The child process outputs 5 times and exits the program.
$parentPid = posix_getpid(); echo "parent progress pid:{$parentPid}\n"; $childList = array(); $pid = pcntl_fork(); if ( $pid == -1) { // 创建失败 exit("fork progress error!\n"); } else if ($pid == 0) { // 子进程执行程序 $pid = posix_getpid(); $repeatNum = 5; for ( $i = 1; $i <= $repeatNum; $i++) { echo "({$pid})child progress is running! {$i} \n"; $rand = rand(1,3); sleep($rand); } exit("({$pid})child progress end!\n"); } else { // 父进程执行程序 $childList[$pid] = 1; } // 等待子进程结束 pcntl_wait($status); echo "({$parentPid})main progress end!";
Perfect, finally created a child process and a parent process. Is it over? No, each process is independent of each other, there is no intersection, and the scope of use is severely limited. What to do? Let’s use interprogress communication.
4. Inter-process Communication (IPC)
Usually the process communication methods in Linux include: message queue, semaphore, shared memory, signal, pipe, and socket.
1. Message Queue
The message queue is a queue stored in memory. The following code will create 3 producer sub-processes and 2 consumer sub-processes. These 5 processes will communicate through the message queue.
$parentPid = posix_getpid(); echo "parent progress pid:{$parentPid}\n";$childList = array(); // 创建消息队列,以及定义消息类型(类似于数据库中的库) $id = ftok(__FILE__,'m'); $msgQueue = msg_get_queue($id); const MSG_TYPE = 1; // 生产者 function producer(){ global $msgQueue; $pid = posix_getpid(); $repeatNum = 5; for ( $i = 1; $i <= $repeatNum; $i++) { $str = "({$pid})progress create! {$i}"; msg_send($msgQueue,MSG_TYPE,$str); $rand = rand(1,3); sleep($rand); } } // 消费者 function consumer(){ global $msgQueue; $pid = posix_getpid(); $repeatNum = 6; for ( $i = 1; $i <= $repeatNum; $i++) { $rel = msg_receive($msgQueue,MSG_TYPE,$msgType,1024,$message); echo "{$message} | consumer({$pid}) destroy \n"; $rand = rand(1,3); sleep($rand); } } function createProgress($callback){ $pid = pcntl_fork(); if ( $pid == -1) { // 创建失败 exit("fork progress error!\n"); } else if ($pid == 0) { // 子进程执行程序 $pid = posix_getpid(); $callback(); exit("({$pid})child progress end!\n"); }else{ // 父进程执行程序 return $pid; } } // 3个写进程 for ($i = 0; $i < 3; $i ++ ) { $pid = createProgress('producer'); $childList[$pid] = 1; echo "create producer child progress: {$pid} \n"; } // 2个写进程 for ($i = 0; $i < 2; $i ++ ) { $pid = createProgress('consumer'); $childList[$pid] = 1; echo "create consumer child progress: {$pid} \n"; } // 等待所有子进程结束 while(!empty($childList)){ $childPid = pcntl_wait($status); if ($childPid > 0){ unset($childList[$childPid]); } } echo "({$parentPid})main progress end!\n";
Since the message queue can only access data by one process, no additional locks or semaphores are required.
2. Semaphore and shared memory
Semaphore: It is an atomic operation provided by the system, a semaphore, and only your process can operate it at the same time. When a process obtains a semaphore, it must be released by the process.
Shared memory: It is a common memory area opened by the system in the memory. Any process can access it. At the same time, multiple processes can access this area. In order to ensure the consistency of data, it is necessary to Lock or semaphore this memory area.
Below, multiple processes are created to modify the same value in memory.
$parentPid = posix_getpid(); echo "parent progress pid:{$parentPid}\n"; $childList = array(); // 创建共享内存,创建信号量,定义共享key $shm_id = ftok(__FILE__,'m'); $sem_id = ftok(__FILE__,'s'); $shareMemory = shm_attach($shm_id); $signal = sem_get($sem_id); const SHARE_KEY = 1; // 生产者 function producer(){ global $shareMemory; global $signal; $pid = posix_getpid(); $repeatNum = 5; for ( $i = 1; $i <= $repeatNum; $i++) { // 获得信号量 sem_acquire($signal); if (shm_has_var($shareMemory,SHARE_KEY)){ // 有值,加一 $count = shm_get_var($shareMemory,SHARE_KEY); $count ++; shm_put_var($shareMemory,SHARE_KEY,$count); echo "({$pid}) count: {$count}\n"; }else{ // 无值,初始化 shm_put_var($shareMemory,SHARE_KEY,0); echo "({$pid}) count: 0\n"; } // 用完释放 sem_release($signal); $rand = rand(1,3); sleep($rand); } } function createProgress($callback){ $pid = pcntl_fork(); if ( $pid == -1) { // 创建失败 exit("fork progress error!\n"); } else if ($pid == 0) { // 子进程执行程序 $pid = posix_getpid(); $callback(); exit("({$pid})child progress end!\n"); }else{ // 父进程执行程序 return $pid; } } // 3个写进程 for ($i = 0; $i < 3; $i ++ ) { $pid = createProgress('producer'); $childList[$pid] = 1; echo "create producer child progress: {$pid} \n"; } // 等待所有子进程结束 while(!empty($childList)){ $childPid = pcntl_wait($status); if ($childPid > 0){ unset($childList[$childPid]); } } // 释放共享内存与信号量 shm_remove($shareMemory); sem_remove($signal); echo "({$parentPid})main progress end!\n";
3. Signal
The signal is a system call. Usually the kill command we use is to send a certain signal to a certain process. You can check the specific signals by running kill -l in liunx/mac. In the following example, the parent process waits for 5 seconds and sends the sigint signal to the child process. The child process captures the signal and processes it with the signal processing function.
$parentPid = posix_getpid(); echo "parent progress pid:{$parentPid}\n"; // 定义一个信号处理函数 function sighandler($signo) { $pid = posix_getpid(); echo "{$pid} progress,oh no ,I'm killed!\n"; exit(1); } $pid = pcntl_fork(); if ( $pid == -1) { // 创建失败 exit("fork progress error!\n"); } else if ($pid == 0) { // 子进程执行程序 // 注册信号处理函数 declare(ticks=10); pcntl_signal(SIGINT, "sighandler"); $pid = posix_getpid(); while(true){ echo "{$pid} child progress is running!\n"; sleep(1); } exit("({$pid})child progress end!\n"); }else{ // 父进程执行程序 $childList[$pid] = 1; // 5秒后,父进程向子进程发送sigint信号. sleep(5); posix_kill($pid,SIGINT); sleep(5); } echo "({$parentPid})main progress end!\n";
4. Pipes (named pipes)
Pipes are a commonly used means of multi-process communication. Pipes are divided into unnamed pipes and named pipes. Unnamed pipes can only be used for processes that have related relationships. Communication between processes, and named pipes can be used by any process on the same host. Only famous channels are introduced here. In the following example, the child process writes data and the parent process reads data.
// 定义管道路径,与创建管道 $pipe_path = '/data/test.pipe'; if(!file_exists($pipe_path)){ if(!posix_mkfifo($pipe_path,0664)){ exit("create pipe error!"); } } $pid = pcntl_fork(); if($pid == 0){ // 子进程,向管道写数据 $file = fopen($pipe_path,'w'); while (true){ fwrite($file,'hello world'); $rand = rand(1,3); sleep($rand); } exit('child end!'); }else{ // 父进程,从管道读数据 $file = fopen($pipe_path,'r'); while (true){ $rel = fread($file,20); echo "{$rel}\n"; $rand = rand(1,2); sleep($rand); } }
Related recommendations:
How to implement PHP process lock
Summary of points to note about PHP process communication
Semaphore and shared memory communication based on PHP process communication
The above is the detailed content of Detailed explanation of PHP inter-process communication. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP 8.4 brings several new features, security improvements, and performance improvements with healthy amounts of feature deprecations and removals. This guide explains how to install PHP 8.4 or upgrade to PHP 8.4 on Ubuntu, Debian, or their derivati

If you are an experienced PHP developer, you might have the feeling that you’ve been there and done that already.You have developed a significant number of applications, debugged millions of lines of code, and tweaked a bunch of scripts to achieve op

Visual Studio Code, also known as VS Code, is a free source code editor — or integrated development environment (IDE) — available for all major operating systems. With a large collection of extensions for many programming languages, VS Code can be c

JWT is an open standard based on JSON, used to securely transmit information between parties, mainly for identity authentication and information exchange. 1. JWT consists of three parts: Header, Payload and Signature. 2. The working principle of JWT includes three steps: generating JWT, verifying JWT and parsing Payload. 3. When using JWT for authentication in PHP, JWT can be generated and verified, and user role and permission information can be included in advanced usage. 4. Common errors include signature verification failure, token expiration, and payload oversized. Debugging skills include using debugging tools and logging. 5. Performance optimization and best practices include using appropriate signature algorithms, setting validity periods reasonably,

A string is a sequence of characters, including letters, numbers, and symbols. This tutorial will learn how to calculate the number of vowels in a given string in PHP using different methods. The vowels in English are a, e, i, o, u, and they can be uppercase or lowercase. What is a vowel? Vowels are alphabetic characters that represent a specific pronunciation. There are five vowels in English, including uppercase and lowercase: a, e, i, o, u Example 1 Input: String = "Tutorialspoint" Output: 6 explain The vowels in the string "Tutorialspoint" are u, o, i, a, o, i. There are 6 yuan in total

This tutorial demonstrates how to efficiently process XML documents using PHP. XML (eXtensible Markup Language) is a versatile text-based markup language designed for both human readability and machine parsing. It's commonly used for data storage an

Static binding (static::) implements late static binding (LSB) in PHP, allowing calling classes to be referenced in static contexts rather than defining classes. 1) The parsing process is performed at runtime, 2) Look up the call class in the inheritance relationship, 3) It may bring performance overhead.

What are the magic methods of PHP? PHP's magic methods include: 1.\_\_construct, used to initialize objects; 2.\_\_destruct, used to clean up resources; 3.\_\_call, handle non-existent method calls; 4.\_\_get, implement dynamic attribute access; 5.\_\_set, implement dynamic attribute settings. These methods are automatically called in certain situations, improving code flexibility and efficiency.
