Home Backend Development Python Tutorial Detailed example of how Python handles concurrency issues through futures

Detailed example of how Python handles concurrency issues through futures

May 11, 2018 pm 05:54 PM
future python deal with

This article mainly introduces Python to deal with concurrency issues through future. It is very good and has reference value. Friends in need can refer to it

future first introduction

Use the following script to have a preliminary understanding of future:

Example 1: Ordinary looping method

import os
import time
import sys
import requests
POP20_CC = (
 "CN IN US ID BR PK NG BD RU JP MX PH VN ET EG DE IR TR CD FR"
).split()
BASE_URL = 'http://flupy.org/data/flags'
DEST_DIR = 'downloads/'
def save_flag(img,filename):
 path = os.path.join(DEST_DIR,filename)
 with open(path,'wb') as fp:
 fp.write(img)
def get_flag(cc):
 url = "{}/{cc}/{cc}.gif".format(BASE_URL,cc=cc.lower())
 resp = requests.get(url)
 return resp.content
def show(text):
 print(text,end=" ")
 sys.stdout.flush()
def download_many(cc_list):
 for cc in sorted(cc_list):
 image = get_flag(cc)
 show(cc)
 save_flag(image,cc.lower()+".gif")
 return len(cc_list)
def main(download_many):
 t0 = time.time()
 count = download_many(POP20_CC)
 elapsed = time.time()-t0
 msg = "\n{} flags downloaded in {:.2f}s"
 print(msg.format(count,elapsed))
if __name__ == '__main__':
 main(download_many)
Copy after login

Example 2: Implemented through future method, here we reuse part of the above code

 from concurrent import futures
from flags import save_flag, get_flag, show, main
MAX_WORKERS = 20
def download_one(cc):
 image = get_flag(cc)
 show(cc)
 save_flag(image, cc.lower()+".gif")
 return cc
def download_many(cc_list):
 workers = min(MAX_WORKERS,len(cc_list))
 with futures.ThreadPoolExecutor(workers) as executor:
 res = executor.map(download_one, sorted(cc_list))
 return len(list(res))
if __name__ == '__main__':
 main(download_many)
Copy after login

Run three times respectively, the average speed of the two is: 13.67 and 1.59s, you can see The difference is still very big.

future

future is an important component of concurrent.futures module and asyncio module

From Starting from python3.4, there are two classes named Future in the standard library: concurrent.futures.Future and asyncio.Future
These two classes have the same function: instances of both Future classes represent things that may be completed or not yet completed. Delayed calculation. Similar to the Deferred class in Twisted and the Future class in the Tornado framework

Note: Normally you should not create a future yourself, but instantiate it by the concurrent framework (concurrent.futures or asyncio)

Reason: future represents something that will eventually happen, and the only way to determine that something will happen is that the execution time has been arranged, so only when something is handed over to the concurrent.futures.Executor subclass for processing, A concurrent.futures.Future instance will be created.
For example: the parameter of the Executor.submit() method is a callable object. After calling this method, the time will be scheduled for the incoming callable object and a

future

# will be returned. ##Client code should not change the state of the future. The concurrency framework will change the state of the future object after the delayed calculation represented by the future ends. We cannot control when the calculation ends.

Both futures have a .done() method. This method does not block. The return value is a Boolean value, indicating whether the callable object linked to the future has been executed. Client code usually does not ask whether the future has finished running, but will wait for notification. Therefore, both Future classes have the .add_done_callback() method. This method has only one parameter, and the type is a callable object. The specified callable object will be called after the future runs. The

.result() method has the same function in the two Future classes: returning the result of the callable object, or re-throwing the exception thrown when executing the callable object. But if the future does not end running, the behavior of the result method in the two Future classes is very different.


For concurrent.futures.Future instances, calling the .result() method will block the thread of the caller until there is a result to return. At this time, the result method can receive an optional timeout. Parameter, if the future does not complete running within the specified time, a TimeoutError exception will be thrown.


The asyncio.Future.result method does not support setting the timeout. It is best to use the yield from structure to obtain future results, but concurrent.futures.Future cannot do this.

No matter Whether it is asyncio or concurrent.futures.Future, there will be several functions that return future, and other functions use future. In the first example, the Executor.map we used uses future, and the return value is an iterator. The iterator The __next__ method calls the result method of each future, so what we get is the result of each future, not the future itself.

Regarding the use of the future.as_completed function, here we use two loops, one with For creating and scheduling future, the other one is used to get the result of future

from concurrent import futures
from flags import save_flag, get_flag, show, main
MAX_WORKERS = 20
def download_one(cc):
 image = get_flag(cc)
 show(cc)
 save_flag(image, cc.lower()+".gif")
 return cc
def download_many(cc_list):
 cc_list = cc_list[:5]
 with futures.ThreadPoolExecutor(max_workers=3) as executor:
 to_do = []
 for cc in sorted(cc_list):
  future = executor.submit(download_one,cc)
  to_do.append(future)
  msg = "Secheduled for {}:{}"
  print(msg.format(cc,future))
 results = []
 for future in futures.as_completed(to_do):
  res = future.result()
  msg = "{}result:{!r}"
  print(msg.format(future,res))
  results.append(res)
 return len(results)
if __name__ == '__main__':
 main(download_many)
Copy after login
The result is as follows:

Note: Python code cannot control GIL, standard All functions in the library that perform blocking IO operations will release the GIL when waiting for the operating system to return results and run other threads for execution. It is precisely because of this that Python threads can play a role in IO-intensive applications

The above are concurrent.futures to start the thread, the following is to start the process through it

concurrent.futures starts the process

ProcessPoolExecutor class in concurrent.futures Distribute work to multiple Python processes, so if you need to do CPU-intensive processing, using this module can bypass the GIL and utilize all CPU cores.

The principle is that a ProcessPoolExecutor creates N independent Python interpreters, where N is the number of CPU cores available on the system.

The usage method is the same as the ThreadPoolExecutor method

The above is the detailed content of Detailed example of how Python handles concurrency issues through futures. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Can vs code run in Windows 8 Can vs code run in Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

How to run sublime code python How to run sublime code python Apr 16, 2025 am 08:48 AM

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

Can visual studio code be used in python Can visual studio code be used in python Apr 15, 2025 pm 08:18 PM

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

Where to write code in vscode Where to write code in vscode Apr 15, 2025 pm 09:54 PM

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

See all articles