python operation sql

Dec 02, 2016 pm 05:10 PM
python

pymsql is a module for operating MySQL in Python. Its usage is almost the same as MySQLdb

1. Download and install

pip3 install pymysql

2. Operation and use

1. Execute SQL

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
# 创建连接
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
# 创建游标
cursor = conn.cursor()
  
# 执行SQL,并返回收影响行数
effect_row = cursor.execute("update hosts set host = '1.1.1.2'")
  
# 执行SQL,并返回受影响行数
#effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,))
  
# 执行SQL,并返回受影响行数
#effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
  
  
# 提交,不然无法保存新建或者修改的数据
conn.commit()
  
# 关闭游标
cursor.close()
# 关闭连接
conn.close()
Copy after login

2. Get newly created data Auto-increment ID

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
conn.commit()
cursor.close()
conn.close()
  
# 获取最新自增ID
new_id = cursor.lastrowid
Copy after login

3. Get query data

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.execute("select * from hosts")
  
# 获取第一行数据
row_1 = cursor.fetchone()
  
# 获取前n行数据
# row_2 = cursor.fetchmany(3)
# 获取所有数据
# row_3 = cursor.fetchall()
  
conn.commit()
cursor.close()
conn.close()
Copy after login

Note: When fetching data, proceed in order. You can use cursor.scroll(num, mode) to move the cursor position, such as:

cursor.scroll(1, mode ='relative') #Move relative to the current position

cursor.scroll(2,mode='absolute') #Move relative to the absolute position

4. The fetch data type about the default data obtained is the ancestor type, if you want or dictionary Type of data, namely:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql
  
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
  
# 游标设置为字典类型
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
r = cursor.execute("call p1()")
  
result = cursor.fetchone()
  
conn.commit()
cursor.close()
conn.close()
Copy after login

SQLAlchemy

SQLAlchemy is an ORM framework under the Python programming language. This framework is built on the database API and uses relational object mapping to perform database operations. In short: convert objects into SQL, and then use the data API to execute the SQL and obtain the execution results.

Installation:

pip3 install SQLAlchemy

python operation sql

SQLAlchemy itself cannot operate the database. It must come from third-party plug-ins such as pymsql. Dialect is used to communicate with the data API and call different database APIs according to different configuration files. To achieve the operation of the database, such as:

MySQL-Python
    mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
   
pymysql
    mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
   
MySQL-Connector
    mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
   
cx_Oracle
    oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
Copy after login

1. Internal processing

Use Engine/ConnectionPooling/Dialect to perform database operations. Engine uses ConnectionPooling to connect to the database, and then executes SQL statements through Dialect.

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy import create_engine
  
  
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)
  
# 执行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES (&#39;1.1.1.22&#39;, 3)"
# )
  
# 新插入行自增ID
# cur.lastrowid
  
# 执行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES(%s, %s)",[(&#39;1.1.1.22&#39;, 3),(&#39;1.1.1.221&#39;, 3),]
# )
  
  
# 执行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES (%(host)s, %(color_id)s)",
#     host=&#39;1.1.1.99&#39;, color_id=3
# )
  
# 执行SQL
# cur = engine.execute(&#39;select * from hosts&#39;)
# 获取第一行数据
# cur.fetchone()
# 获取第n行数据
# cur.fetchmany(3)
# 获取所有数据
# cur.fetchall()
Copy after login

2. Use of ORM functions

Use all components of ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect to operate on data. Create objects based on classes, convert objects into SQL, and execute SQL.

1. Create table

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
 
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)
 
Base = declarative_base()
 
# 创建单表
class Users(Base):
    __tablename__ = &#39;users&#39;
    id = Column(Integer, primary_key=True)
    name = Column(String(32))
    extra = Column(String(16))
 
    __table_args__ = (
    UniqueConstraint(&#39;id&#39;, &#39;name&#39;, name=&#39;uix_id_name&#39;),
        Index(&#39;ix_id_name&#39;, &#39;name&#39;, &#39;extra&#39;),
    )
 
 
# 一对多
class Favor(Base):
    __tablename__ = &#39;favor&#39;
    nid = Column(Integer, primary_key=True)
    caption = Column(String(50), default=&#39;red&#39;, unique=True)
 
 
class Person(Base):
    __tablename__ = &#39;person&#39;
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    favor_id = Column(Integer, ForeignKey("favor.nid"))
 
 
# 多对多
class Group(Base):
    __tablename__ = &#39;group&#39;
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)
    port = Column(Integer, default=22)
 
 
class Server(Base):
    __tablename__ = &#39;server&#39;
 
    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)
 
 
class ServerToGroup(Base):
    __tablename__ = &#39;servertogroup&#39;
    nid = Column(Integer, primary_key=True, autoincrement=True)
    server_id = Column(Integer, ForeignKey(&#39;server.id&#39;))
    group_id = Column(Integer, ForeignKey(&#39;group.id&#39;))
 
 
def init_db():
    Base.metadata.create_all(engine)
 
 
def drop_db():
    Base.metadata.drop_all(engine)
注:设置外检的另一种方式 ForeignKeyConstraint([&#39;other_id&#39;], [&#39;othertable.other_id&#39;])
Copy after login

2. Operation table

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)

Base = declarative_base()

# 创建单表
class Users(Base):
    __tablename__ = &#39;users&#39;
    id = Column(Integer, primary_key=True)
    name = Column(String(32))
    extra = Column(String(16))

    __table_args__ = (
    UniqueConstraint(&#39;id&#39;, &#39;name&#39;, name=&#39;uix_id_name&#39;),
        Index(&#39;ix_id_name&#39;, &#39;name&#39;, &#39;extra&#39;),
    )

    def __repr__(self):
        return "%s-%s" %(self.id, self.name)

# 一对多
class Favor(Base):
    __tablename__ = &#39;favor&#39;
    nid = Column(Integer, primary_key=True)
    caption = Column(String(50), default=&#39;red&#39;, unique=True)

    def __repr__(self):
        return "%s-%s" %(self.nid, self.caption)

class Person(Base):
    __tablename__ = &#39;person&#39;
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    favor_id = Column(Integer, ForeignKey("favor.nid"))
    # 与生成表结构无关,仅用于查询方便
    favor = relationship("Favor", backref=&#39;pers&#39;)

# 多对多
class ServerToGroup(Base):
    __tablename__ = &#39;servertogroup&#39;
    nid = Column(Integer, primary_key=True, autoincrement=True)
    server_id = Column(Integer, ForeignKey(&#39;server.id&#39;))
    group_id = Column(Integer, ForeignKey(&#39;group.id&#39;))
    group = relationship("Group", backref=&#39;s2g&#39;)
    server = relationship("Server", backref=&#39;s2g&#39;)

class Group(Base):
    __tablename__ = &#39;group&#39;
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)
    port = Column(Integer, default=22)
    # group = relationship(&#39;Group&#39;,secondary=ServerToGroup,backref=&#39;host_list&#39;)


class Server(Base):
    __tablename__ = &#39;server&#39;

    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)




def init_db():
    Base.metadata.create_all(engine)


def drop_db():
    Base.metadata.drop_all(engine)


Session = sessionmaker(bind=engine)
session = Session()
Copy after login
obj = Users(name="alex0", extra=&#39;sb&#39;)
session.add(obj)
session.add_all([
    Users(name="alex1", extra=&#39;sb&#39;),
    Users(name="alex2", extra=&#39;sb&#39;),
])
session.commit()
Copy after login
 session.query(Users).filter(Users.id > 2).delete()
 session.commit()
Copy after login
session.query(Users).filter(Users.id > 2).update({"name" : "099"})
session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + "099"}, synchronize_session=False)
session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate")
session.commit()
Copy after login
 ret = session.query(Users).all()
 ret = session.query(Users.name, Users.extra).all()
 ret = session.query(Users).filter_by(name=&#39;alex&#39;).all()
 ret = session.query(Users).filter_by(name=&#39;alex&#39;).first()
Copy after login
ret = session.query(Users).filter_by(name=&#39;alex&#39;).all()
ret = session.query(Users).filter(Users.id > 1, Users.name == &#39;eric&#39;).all()
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == &#39;eric&#39;).all()
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name=&#39;eric&#39;))).all()
from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == &#39;eric&#39;)).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == &#39;eric&#39;)).all()
ret = session.query(Users).filter(
    or_(
        Users.id < 2,
        and_(Users.name == &#39;eric&#39;, Users.id > 3),
        Users.extra != ""
    )).all()


# 通配符
ret = session.query(Users).filter(Users.name.like(&#39;e%&#39;)).all()
ret = session.query(Users).filter(~Users.name.like(&#39;e%&#39;)).all()

# 限制
ret = session.query(Users)[1:2]

# 排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all()

# 分组
from sqlalchemy.sql import func

ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).all()

ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all()

# 连表

ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all()

ret = session.query(Person).join(Favor).all()

ret = session.query(Person).join(Favor, isouter=True).all()


# 组合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all()

q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()
Copy after login


Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Can vs code run in Windows 8 Can vs code run in Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

Can visual studio code be used in python Can visual studio code be used in python Apr 15, 2025 pm 08:18 PM

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

How to run python with notepad How to run python with notepad Apr 16, 2025 pm 07:33 PM

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

Is the vscode extension malicious? Is the vscode extension malicious? Apr 15, 2025 pm 07:57 PM

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

See all articles