Home Backend Development Python Tutorial Share some tips on python data statistics

Share some tips on python data statistics

Aug 04, 2016 am 08:55 AM
python Statistics statistics

I have recently been using Python to do data statistics. Here are some tips that I have found and summarized recently. I hope it can help some children in this area. Some techniques are very common usage, and we usually don’t pay attention to them, but in specific scenarios, these small methods can still bring great help.

1. Map keys to multiple values ​​in the dictionary

{'b': [4, 5, 6], 
'a': [1, 2, 3]}
Copy after login

Sometimes when we count the same key values, we want to add all entries with the same key to a dictionary with key as the key, and then perform various operations. At this time, we can use the following code to operate:

from collections import defaultdict
d = defaultdict(list)
print(d)
d['a'].append(1)
d['a'].append(2)
d['a'].append(3)
d['b'].append(4)
d['b'].append(5)
d['b'].append(6)
print(d)
print(d.get("a"))
print(d.keys())
print([d.get(i) for i in d])
Copy after login

The methods in collections are used here. There are many useful methods in there. We have time to continue to understand them in depth.

The result of running the above code:

defaultdict(, {})
defaultdict(, {'b': [4, 5, 6], 'a': [1, 2, 3]})
[1, 2, 3]
dict_keys(['b', 'a'])
[[4, 5, 6], [1, 2, 3]]
Copy after login

After we fill in the data, it is equivalent to quickly grouping, and then traverse each group to count some of the data we need.

2. Quickly convert dictionary key-value pairs

data = {...}
zip(data.values(), data.keys())
Copy after login

data is our format data. Use zip for fast key-value conversion, and then you can use functions such as max and min for data operations.

3. Sort dictionary by common key

from operator import itemgetter
data = [
  {'name': "bran", "uid": 101},
  {'name': "xisi", "uid": 102},
  {'name': "land", "uid": 103}
]
print(sorted(data, key=itemgetter("name")))
print(sorted(data, key=itemgetter("uid")))
Copy after login

The data format is data. If we want to sort names or uids, we use the method in the code.
Running result:

[{'name': 'bran', 'uid': 101}, {'name': 'land', 'uid': 103}, {'name': 'xisi', 'uid': 102}]
[{'name': 'bran', 'uid': 101}, {'name': 'xisi', 'uid': 102}, {'name': 'land', 'uid': 103}]
Copy after login

Just as we expected

4. Group multiple dictionaries in the list according to a certain field

Please note that the data must be sorted first before grouping. The sorting field is selected according to actual requirements

Data to be processed:

rows = [
  {'name': "bran", "uid": 101, "class": 13},
  {'name': "xisi", "uid": 101, "class": 11},
  {'name': "land", "uid": 103, "class": 10}
]
Copy after login

Expected processing results:

{
101: [{'name': 'xisi', 'class': 11, 'uid': 101},{'name': 'bran', 'class': 13, 'uid': 101}],
103: [{'name': 'land', 'class': 10, 'uid': 103}]
}
Copy after login

We group by uid, this is just a demonstration, uid generally will not be repeated.

This is a bit more complicated, let’s break it down step by step

some = [('a', [1, 2, 3]), ('b', [4, 5, 6])]
print(dict(some))
Copy after login

Result:

{'b': [4, 5, 6], 'a': [1, 2, 3]}
Copy after login

Our purpose here is to convert tuples into dictionaries. This is very simple and everyone should understand it. Then let’s take the next step to sort the data to be processed:

data_one = sorted(rows, key=itemgetter("class"))
print(data_one)
data_two = sorted(rows, key=lambda x: (x["uid"], x["class"]))
print(data_two)
Copy after login

Here we provide two sorting methods with the same principle, but the styles are slightly different. The first data_one uses itemgetter directly. As we have used before, it sorts directly according to a certain field, but sometimes we have another one. Requirements:

First sort by a certain field, and then sort by another field when the first field is repeated.

At this time, we will use the second method to sort multi-field values.
The sorting results are as follows:

[{'name': 'land', 'class': 10, 'uid': 103}, {'name': 'xisi', 'class': 11, 'uid': 101}, {'name': 'bran', 'class': 13, 'uid': 101}]
[{'name': 'xisi', 'class': 11, 'uid': 101}, {'name': 'bran', 'class': 13, 'uid': 101}, {'name': 'land', 'class': 10, 'uid': 103}]
Copy after login

If you take a look at the results, there are still slight differences.

Then comes the last step, combining the two methods we just talked about:

data = dict([(g, list(k)) for g, k in groupby(data_two, key=lambda x: x["uid"])])
print(data)
Copy after login

We group the sorted data, then generate a list of tuples, and finally convert it into a dictionary. We are done here, we have successfully grouped the data.

Some tips on python data statistics are shared here, you can refer to them if you need them.

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Can vs code run in Windows 8 Can vs code run in Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

Can visual studio code be used in python Can visual studio code be used in python Apr 15, 2025 pm 08:18 PM

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

How to run python with notepad How to run python with notepad Apr 16, 2025 pm 07:33 PM

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

Is the vscode extension malicious? Is the vscode extension malicious? Apr 15, 2025 pm 07:57 PM

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

See all articles