Python中__init__和__new__的区别详解
__init__ 方法是什么?
使用Python写过面向对象的代码的同学,可能对 __init__ 方法已经非常熟悉了,__init__ 方法通常用在初始化一个类实例的时候。例如:
# -*- coding: utf-8 -*- class Person(object): """Silly Person""" def __init__(self, name, age): self.name = name self.age = age def __str__(self): return '<Person: %s(%s)>' % (self.name, self.age) if __name__ == '__main__': piglei = Person('piglei', 24) print piglei
这样便是__init__最普通的用法了。但__init__其实不是实例化一个类的时候第一个被调用 的方法。当使用 Persion(name, age) 这样的表达式来实例化一个类时,最先被调用的方法 其实是 __new__ 方法。
__new__ 方法是什么?
__new__方法接受的参数虽然也是和__init__一样,但__init__是在类实例创建之后调用,而 __new__方法正是创建这个类实例的方法。
# -*- coding: utf-8 -*- class Person(object): """Silly Person""" def __new__(cls, name, age): print '__new__ called.' return super(Person, cls).__new__(cls, name, age) def __init__(self, name, age): print '__init__ called.' self.name = name self.age = age def __str__(self): return '<Person: %s(%s)>' % (self.name, self.age) if __name__ == '__main__': piglei = Person('piglei', 24) print piglei
执行结果:
piglei@macbook-pro:blog$ python new_and_init.py __new__ called. __init__ called. <Person: piglei(24)>
通过运行这段代码,我们可以看到,__new__方法的调用是发生在__init__之前的。其实当 你实例化一个类的时候,具体的执行逻辑是这样的:
1.p = Person(name, age)
2.首先执行使用name和age参数来执行Person类的__new__方法,这个__new__方法会 返回Person类的一个实例(通常情况下是使用 super(Persion, cls).__new__(cls, ... ...) 这样的方式)
3.然后利用这个实例来调用类的__init__方法,上一步里面__new__产生的实例也就是 __init__里面的的 self
所以,__init__ 和 __new__ 最主要的区别在于:
1.__init__ 通常用于初始化一个新实例,控制这个初始化的过程,比如添加一些属性, 做一些额外的操作,发生在类实例被创建完以后。它是实例级别的方法。
2.__new__ 通常用于控制生成一个新实例的过程。它是类级别的方法。
但是说了这么多,__new__最通常的用法是什么呢,我们什么时候需要__new__?
__new__ 的作用
依照Python官方文档的说法,__new__方法主要是当你继承一些不可变的class时(比如int, str, tuple), 提供给你一个自定义这些类的实例化过程的途径。还有就是实现自定义的metaclass。
首先我们来看一下第一个功能,具体我们可以用int来作为一个例子:
假如我们需要一个永远都是正数的整数类型,通过集成int,我们可能会写出这样的代码。
class PositiveInteger(int): def __init__(self, value): super(PositiveInteger, self).__init__(self, abs(value)) i = PositiveInteger(-3) print i
但运行后会发现,结果根本不是我们想的那样,我们任然得到了-3。这是因为对于int这种 不可变的对象,我们只有重载它的__new__方法才能起到自定义的作用。
这是修改后的代码:
class PositiveInteger(int): def __new__(cls, value): return super(PositiveInteger, cls).__new__(cls, abs(value)) i = PositiveInteger(-3) print i
通过重载__new__方法,我们实现了需要的功能。
另外一个作用,关于自定义metaclass。其实我最早接触__new__的时候,就是因为需要自定义 metaclass,但鉴于篇幅原因,我们下次再来讲python中的metaclass和__new__的关系。
用__new__来实现单例
事实上,当我们理解了__new__方法后,我们还可以利用它来做一些其他有趣的事情,比如实现 设计模式中的 单例模式(singleton) 。
因为类每一次实例化后产生的过程都是通过__new__来控制的,所以通过重载__new__方法,我们 可以很简单的实现单例模式。
class Singleton(object): def __new__(cls): # 关键在于这,每一次实例化的时候,我们都只会返回这同一个instance对象 if not hasattr(cls, 'instance'): cls.instance = super(Singleton, cls).__new__(cls) return cls.instance obj1 = Singleton() obj2 = Singleton() obj1.attr1 = 'value1' print obj1.attr1, obj2.attr1 print obj1 is obj2
输出结果:
value1 value1
True
可以看到obj1和obj2是同一个实例。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.
