Java program to find the maximum and minimum elements in a stack
Stack is a basic data structure that follows the last-in first-out principle (also known as LIFO). There are many use cases for the stack, such as organizing function calls and undoing operations. Often, one may encounter the problem of finding the largest and smallest elements in the stack, and this article will demonstrate multiple ways to accomplish this task using Java.
Understanding Stack
Stack is a linear data structure that allows operations only at one end, called the top. Main operations include:
- Push (Push): Add elements to the top of the stack.
- Pop (Pop): Removes and returns to the top element of the stack.
- View (Peek): View the top element of the stack without removing it.
- IsEmpty (IsEmpty): Check whether the stack is empty.
Problem Statement
The goal is to determine the maximum and minimum elements in the stack. Given the LIFO nature of the stack, elements other than the top cannot be accessed directly. This requires traversing the stack while keeping track of the maximum and minimum values.
Use two additional variables
Here, we use two variables min
and max
to track the minimum and maximum values respectively. Iterate over the stack and update these variables as each element is processed. This is the easiest method, and the most time-consuming and space-consuming method.
import java.util.Stack; public class MaxMinInStack { public static void main(String[] args) { Stack<Integer> stack = new Stack<>(); stack.push(10); stack.push(20); stack.push(30); stack.push(5); stack.push(15); int[] result = findMaxMin(stack); System.out.println("最大元素: " + result[0]); System.out.println("最小元素: " + result[1]); } public static int[] findMaxMin(Stack<Integer> stack) { if (stack.isEmpty()) { throw new IllegalArgumentException("栈为空"); } int max = Integer.MIN_VALUE; int min = Integer.MAX_VALUE; for (Integer element : stack) { if (element > max) { max = element; } if (element < min) { min = element; } } return new int[]{max, min}; } }
Output
Maximum elements: 30 Minimum element: 5Using the auxiliary stack
Here, we traverse the stack by using a pop-up operation and updating the minimum and maximum values as needed. The auxiliary stack temporarily saves elements and then restores these elements to the original stack.
import java.util.Stack; public class MaxMinInStack { public static void main(String[] args) { Stack<Integer> stack = new Stack<>(); stack.push(10); stack.push(20); stack.push(30); stack.push(5); stack.push(15); int[] result = findMaxMinWithAuxiliaryStack(stack); System.out.println("最大元素: " + result[0]); System.out.println("最小元素: " + result[1]); } public static int[] findMaxMinWithAuxiliaryStack(Stack<Integer> stack) { if (stack.isEmpty()) { throw new IllegalArgumentException("栈为空"); } Stack<Integer> tempStack = new Stack<>(); int max = stack.peek(); int min = stack.peek(); while (!stack.isEmpty()) { int current = stack.pop(); if (current > max) { max = current; } if (current < min) { min = current; } tempStack.push(current); } while (!tempStack.isEmpty()) { stack.push(tempStack.pop()); } return new int[]{max, min}; } }
Output
Maximum elements: 30 Minimum element: 5Use two stacks
This method uses two extra stacks, one for remembering the largest element (maxStack
) and the other for remembering the smallest element (minStack
). Every time a new element enters the main stack, if it makes the maximum or minimum value larger, we also put it in maxStack
or minStack
.
import java.util.Stack; public class MaxMinInStack { // ... (main method remains the same) ... public static int[] findMaxMinWithTwoStacks(Stack<Integer> stack) { Stack<Integer> maxStack = new Stack<>(); Stack<Integer> minStack = new Stack<>(); while (!stack.isEmpty()) { int current = stack.pop(); if (maxStack.isEmpty() || current >= maxStack.peek()) { maxStack.push(current); } if (minStack.isEmpty() || current <= minStack.peek()) { minStack.push(current); } } return new int[]{maxStack.peek(), minStack.peek()}; } }
Output
Maximum elements: 30 Minimum element: 5Use the modified stack structure
The stack structure is modified to include the maximum and minimum values and regular stack elements within itself. Each element is saved as a pair containing the value, the current maximum value, and the current minimum value.
import java.util.Stack; public class MaxMinInStack { static class StackNode { int value; int currentMax; int currentMin; StackNode(int value, int currentMax, int currentMin) { this.value = value; this.currentMax = currentMax; this.currentMin = currentMin; } } public static void main(String[] args) { Stack<StackNode> stack = new Stack<>(); push(stack, 10); push(stack, 20); push(stack, 30); push(stack, 5); push(stack, 15); int[] result = findMaxMinWithModifiedStack(stack); System.out.println("最大元素: " + result[0]); System.out.println("最小元素: " + result[1]); } public static void push(Stack<StackNode> stack, int value) { int max = stack.isEmpty() ? value : Math.max(value, stack.peek().currentMax); int min = stack.isEmpty() ? value : Math.min(value, stack.peek().currentMin); stack.push(new StackNode(value, max, min)); } public static int[] findMaxMinWithModifiedStack(Stack<StackNode> stack) { if (stack.isEmpty()) { throw new IllegalArgumentException("栈为空"); } StackNode topNode = stack.peek(); return new int[]{topNode.currentMax, topNode.currentMin}; } }
Output
Maximum elements: 30 Minimum element: 5Conclusion
Looking for the largest and smallest elements in the stack can be solved in different ways, each with its advantages and disadvantages. The methods shown include using additional variables, auxiliary stacks, managing separate stacks for maximum and minimum values, or changing the structure of the stack itself.
Each technology provides a specific way to deal with access or saving stack items, which makes it suitable for certain situations based on memory limitations, performance requirements, and data integrity requirements. Understanding and applying these methods can help developers effectively handle stacks in Java, making their applications best suited for certain situations.
The above is the detailed content of Java program to find the maximum and minimum elements in a stack. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHP is suitable for web development, with simple syntax and high execution efficiency. 2. Python is suitable for data science and machine learning, with concise syntax and rich libraries.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

PHP and Python each have their own advantages and are suitable for different scenarios. 1.PHP is suitable for web development and provides built-in web servers and rich function libraries. 2. Python is suitable for data science and machine learning, with concise syntax and a powerful standard library. When choosing, it should be decided based on project requirements.

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

Java is a popular programming language that can be learned by both beginners and experienced developers. This tutorial starts with basic concepts and progresses through advanced topics. After installing the Java Development Kit, you can practice programming by creating a simple "Hello, World!" program. After you understand the code, use the command prompt to compile and run the program, and "Hello, World!" will be output on the console. Learning Java starts your programming journey, and as your mastery deepens, you can create more complex applications.
