Table of Contents
Build Wikipedia command line tools using Python and Wikipedia API
Prerequisites
Step 1: Understand the Wikipedia API
Step 2: Set up the Python environment
Step 3: Plan CLI functions
Step 4: Implement CLI tool
Step 5: Test the CLI tool
Step 6: Enhance Tools
Conclusion
Home Backend Development Python Tutorial How to Create a Wikipedia CLI

How to Create a Wikipedia CLI

Jan 25, 2025 am 12:13 AM

How to Create a Wikipedia CLI

Build Wikipedia command line tools using Python and Wikipedia API

Creating a Wikipedia command line interface (CLI) tool was a very fulfilling project that combined the simplicity of Python with the vast knowledge base of Wikipedia. This tutorial will walk you step-by-step through building a CLI tool that gets information from Wikipedia using its API.


Prerequisites

Before you begin, make sure you have the following:

  • Python 3.7 or higher installed on your system.
  • Basic knowledge of Python and experience using APIs.
  • Internet connection for accessing the Wikipedia API.

Step 1: Understand the Wikipedia API

Wikipedia provides a RESTful API at https://www.php.cn/link/27bf6226213cf288dfbf62ffc02bad4f. This API allows developers to query Wikipedia for content, metadata, and more. Key endpoints we will use include:

  • action=query: Get general content from Wikipedia.
  • list=search: Search articles by keyword.
  • prop=extracts: Retrieve article abstracts.

The base URL for all API requests is:

<code>https://www.php.cn/link/27bf6226213cf288dfbf62ffc02bad4f</code>
Copy after login

Step 2: Set up the Python environment

First create a Python virtual environment and install the required libraries. We will use requests to make HTTP requests and argparse to handle CLI parameters.

<code># 创建虚拟环境
python -m venv wikipedia-cli-env

# 激活环境
# 在Windows上:
wikipedia-cli-env\Scripts\activate
# 在Mac/Linux上:
source wikipedia-cli-env/bin/activate

# 安装依赖项
pip install requests argparse</code>
Copy after login

Step 3: Plan CLI functions

Our CLI tool will include the following features:

  1. Search Wikipedia articles : Allows users to search for articles by keywords.
  2. Get article summary: Retrieve a short summary of a specific article.
  3. View CLI Help: Displays usage instructions.

Step 4: Implement CLI tool

The following is the Python code for the CLI tool:

import argparse
import requests

# 定义维基百科API的基本URL
WIKIPEDIA_API_URL = "https://www.php.cn/link/27bf6226213cf288dfbf62ffc02bad4f"

def search_articles(query):
    """搜索与查询匹配的维基百科文章。"""
    params = {
        'action': 'query',
        'list': 'search',
        'srsearch': query,
        'format': 'json',
    }
    response = requests.get(WIKIPEDIA_API_URL, params=params)
    response.raise_for_status()  # 对错误的响应引发错误
    data = response.json()

    if 'query' in data:
        return data['query']['search']
    else:
        return []

def get_article_summary(title):
    """获取维基百科文章的摘要。"""
    params = {
        'action': 'query',
        'prop': 'extracts',
        'exintro': True,
        'titles': title,
        'format': 'json',
    }
    response = requests.get(WIKIPEDIA_API_URL, params=params)
    response.raise_for_status()
    data = response.json()

    pages = data.get('query', {}).get('pages', {})
    for page_id, page in pages.items():
        if 'extract' in page:
            return page['extract']
    return "No summary available."

def main():
    parser = argparse.ArgumentParser(description="一个与维基百科交互的CLI工具。")
    subparsers = parser.add_subparsers(dest="command")

    # 子命令:search
    search_parser = subparsers.add_parser("search", help="在维基百科上搜索文章。")
    search_parser.add_argument("query", help="搜索查询。")

    # 子命令:summary
    summary_parser = subparsers.add_parser("summary", help="获取特定维基百科文章的摘要。")
    summary_parser.add_argument("title", help="维基百科文章的标题。")

    args = parser.parse_args()

    if args.command == "search":
        results = search_articles(args.query)
        if results:
            print("搜索结果:")
            for result in results:
                print(f"- {result['title']}: {result['snippet']}")
        else:
            print("未找到结果。")

    elif args.command == "summary":
        summary = get_article_summary(args.title)
        print(summary)

    else:
        parser.print_help()

if __name__ == "__main__":
    main()
Copy after login

Step 5: Test the CLI tool

Save the script as wikipedia_cli.py. You can now run the tool from the terminal:

  1. Search articles:
<code>python wikipedia_cli.py search "Python programming"</code>
Copy after login
  1. Get article summary:
<code>python wikipedia_cli.py summary "Python (programming language)"</code>
Copy after login

Step 6: Enhance Tools

To make the tool more powerful and user-friendly, please consider adding the following:

  1. Error handling: Provide detailed error messages for failed API requests.
  2. Formatting: Use libraries like rich to get prettier output.
  3. Caching: Implement caching to avoid repeated API calls for the same query.
  4. Additional Features: Add support for getting related articles, categories or images.

Conclusion

You have successfully built a Wikipedia CLI tool using Python and its API! This tool can serve as a good starting point for more advanced projects, such as integrating it into other applications or creating a GUI version. Happy coding!

The above is the detailed content of How to Create a Wikipedia CLI. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1655
14
PHP Tutorial
1255
29
C# Tutorial
1228
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

See all articles