Home Backend Development PHP Tutorial Map of Highest Peak

Map of Highest Peak

Jan 23, 2025 am 02:23 AM

1765. Map of Highest Peak

Difficulty: Medium

Topics: Array, Breadth-First Search, Matrix

You are given an integer matrix isWater of size m x n that represents a map of land and water cells.

  • If isWater[i][j] == 0, cell (i, j) is a land cell.
  • If isWater[i][j] == 1, cell (i, j) is a water cell.

You must assign each cell a height in a way that follows these rules:

  • The height of each cell must be non-negative.
  • If the cell is a water cell, its height must be 0.
  • Any two adjacent cells must have an absolute height difference of at most 1. A cell is adjacent to another cell if the former is directly north, east, south, or west of the latter (i.e., their sides are touching).

Find an assignment of heights such that the maximum height in the matrix is maximized.

Return an integer matrix height of size m x n where height[i][j] is cell (i, j)'s height. If there are multiple solutions, return any of them.

Example 1:

Map of Highest Peak

  • Input: isWater = [[0,1],[0,0]]
  • Output: [[1,0],[2,1]]
  • Explanation: The image shows the assigned heights of each cell.
    • The blue cell is the water cell, and the green cells are the land cells.

Example 2:

Map of Highest Peak

  • Input: isWater = [[0,0,1],[1,0,0],[0,0,0]]
  • Output: [[1,1,0],[0,1,1],[1,2,2]]
  • Explanation: A height of 2 is the maximum possible height of any assignment.
    • Any height assignment that has a maximum height of 2 while still meeting the rules will also be accepted.

Example 3:

  • Input: isWater = [[1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,0,1,1,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,1,0,0,0,1,0,0,1,0,1,1,0,0,0,1,0,1,1,1,0,0,1,0,0,0,1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,0,0,1,0,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0],[1,1,0,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,0,0,1,1,0,1,1,0,0,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,1,0,0,1,1,0,0,0,1,0,0,0,1,1,0,1,0,1,0,0,0,1,0,0,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,1,1,0,0,1,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0,1,1,1,1,0,0,0,1,0,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0],[0,0,1,1,0,0,1,0,0,0,0,1,0,0,0,1,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,0,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,1,0,1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,1,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,1,0,1,0,0],...]
  • Output: [[0,1,2,2,2,1,0,1,1,0,1,1,0,1,2,1,1,2,2,1,1,0,0,1,2,1,1,2,2,1,0,1,1,0,1,0,0,1,1,0,1,0,1,2,2,1,1,1,0,1,1,1,0,0,1,1,1,2,1,0,1,2,3,2,1,1,0,1,1,0,1,2,2,1,2,2,1,0,1,1,0,1,2,1,0,0,1,2,1,0,1,1,0,1,0,0,1,2,1,0,1,0,0,0,1,1,0,1,1,1,0,0,1,0,1,1,1,0,1,1,0,1,1,2,1,0,1,0,1,0,0,1,2,1,2,3,3,2,2,1,0,0,0,1,1,1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,1,2,1,1,2,2,1,0,0,0,1,0,1,1,2,3,2,2,2,2,2,2,3,2,3,3,2,1,0,1,2,1,1,2,1,0,1,0,0,0,1,1,0,1,2,3,2,1,0,1,2,1,1,0,1,1,0,1,2],[0,0,1,1,2,2,1,0,1,1,1,0,1,2,1,0,0,1,1,0,1,1,0,0,1,0,0,1,1,0,0,1,1,1,0,1,1,1,1,0,1,1,2,2,1,0,0,1,1,1,0,1,0,1,1,0,0,1,2,1,0,1,2,1,0,0,1,0,1,0,1,2,1,0,1,1,0,0,0,0,1,2,3,2,1,1,0,1,1,1,1,0,1,0,1,0,0,1,1,0,1,0,1,1,1,1,0,1,0,1,0,0,1,1,1,0,0,0,0,1,1,1,0,1,0,1,2,1,1,0,0,0,1,0,1,2,2,1,1,0,1,0,1,1,0,1,1,1,1,0,1,0,0,1,1,1,0,0,0,1,2,1,0,0,1,1,0,1,0,1,2,1,1,0,1,2,1,1,1,1,1,1,2,1,2,3,3,2,1,0,1,0,0,1,0,1,0,0,1,0,1,2,1,2,3,2,1,1,0,1,1,0,1,0,1,2,1,2,3],[1,1,0,0,1,1,0,1,1,2,1,0,1,1,1,0,1,0,1,0,1,1,0,1,2,1,1,0,1,1,1,1,0,1,1,2,1,0,1,1,2,1,2,2,1,1,0,1,0,1,0,1,1,2,1,0,1,2,1,...]]

Constraints:

  • m == isWater.length
  • n == isWater[i].length
  • 1
  • isWater[i][j] is 0 or 1.
  • There is at least one water cell.

Hint:

  1. Set each water cell to be 0. The height of each cell is limited by its closest water cell.
  2. Perform a multi-source BFS with all the water cells as sources.

Note: This question is the same as 542. 01 Matrix

Solution:

We can use a breadth-first search (BFS) approach. Here's how we can approach it step-by-step:

Problem Breakdown:

  1. Water Cells: The cells with 1 represent water cells, and their height is always 0.
  2. Land Cells: The cells with 0 represent land cells, and their height should be assigned such that adjacent land cells have a height difference of at most 1.

Approach:

  1. BFS Initialization:

    • We start by marking all the water cells (cells with value 1) as the starting points in the BFS and assign their height to 0.
    • Then we process the neighboring land cells (cells with value 0) to assign heights.
  2. BFS Traversal:

    • From each water cell, we expand outwards, increasing the height by 1 for each adjacent land cell, making sure that the height difference between adjacent cells never exceeds 1.
    • We continue this process until all the cells are visited.
  3. Result: The result will be a matrix of heights that adheres to the given rules, with the height values maximized.

Let's implement this solution in PHP: 1765. Map of Highest Peak

<?php /**
 * @param Integer[][] $isWater
 * @return Integer[][]
 */
function highestPeak($isWater) {
    ...
    ...
    ...
    /**
     * go to ./solution.php
     */
}

// Example usage:
$$isWater1 = [[0,1],[0,0]];
$$isWater2 = [[0,0,1],[1,0,0],[0,0,0]];
$$isWater3 = [[1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,0,1,1,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,1,0,0,0,1,0,0,1,0,1,1,0,0,0,1,0,1,1,1,0,0,1,0,0,0,1,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,0,0,1,0,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0],[1,1,0,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,0,0,1,1,0,1,1,0,0,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,1,0,0,1,1,0,0,0,1,0,0,0,1,1,0,1,0,1,0,0,0,1,0,0,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,1,1,0,0,1,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0,1,1,1,1,0,0,0,1,0,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0],[0,0,1,1,0,0,1,0,0,0,0,1,0,0,0,1,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,0,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,1,1,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,1,0,1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1,1,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,1,0,1,0,0],...];

echo highestPeak($$isWater1) . "\n"; // Output: [[1,0],[2,1]]
echo highestPeak($$isWater2) . "\n"; // Output: [[1,1,0],[0,1,1],[1,2,2]]
echo highestPeak($$isWater3) . "\n"; // Output: [[0,1,2,2,2,1,0,1,1,0,1,1,0,1,2,1,1,2,2,1,1,0,0,1,2,1,1,2,2,1,0,1,1,0,1,0,0,1,1,0,1,0,1,2,2,1,1,1,0,1,1,1,0,0,1,1,1,2,1,0,1,2,3,2,1,1,0,1,1,0,1,2,2,1,2,2,1,0,1,1,0,1,2,1,0,0,1,2,1,0,1,1,0,1,0,0,1,2,1,0,1,0,0,0,1,1,0,1,1,1,0,0,1,0,1,1,1,0,1,1,0,1,1,2,1,0,1,0,1,0,0,1,2,1,2,3,3,2,2,1,0,0,0,1,1,1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,1,2,1,1,2,2,1,0,0,0,1,0,1,1,2,3,2,2,2,2,2,2,3,2,3,3,2,1,0,1,2,1,1,2,1,0,1,0,0,0,1,1,0,1,2,3,2,1,0,1,2,1,1,0,1,1,0,1,2],[0,0,1,1,2,2,1,0,1,1,1,0,1,2,1,0,0,1,1,0,1,1,0,0,1,0,0,1,1,0,0,1,1,1,0,1,1,1,1,0,1,1,2,2,1,0,0,1,1,1,0,1,0,1,1,0,0,1,2,1,0,1,2,1,0,0,1,0,1,0,1,2,1,0,1,1,0,0,0,0,1,2,3,2,1,1,0,1,1,1,1,0,1,0,1,0,0,1,1,0,1,0,1,1,1,1,0,1,0,1,0,0,1,1,1,0,0,0,0,1,1,1,0,1,0,1,2,1,1,0,0,0,1,0,1,2,2,1,1,0,1,0,1,1,0,1,1,1,1,0,1,0,0,1,1,1,0,0,0,1,2,1,0,0,1,1,0,1,0,1,2,1,1,0,1,2,1,1,1,1,1,1,2,1,2,3,3,2,1,0,1,0,0,1,0,1,0,0,1,0,1,2,1,2,3,2,1,1,0,1,1,0,1,0,1,2,1,2,3],[1,1,0,0,1,1,0,1,1,2,1,0,1,1,1,0,1,0,1,0,1,1,0,1,2,1,1,0,1,1,1,1,0,1,1,2,1,0,1,1,2,1,2,2,1,1,0,1,0,1,0,1,1,2,1,0,1,2,1,...]]
?>
Copy after login

Explanation:

  1. Initialization:

    • We initialize the height matrix with -1 for all cells. The water cells are immediately set to 0.
    • The water cells are enqueued to the BFS queue.
  2. BFS:

    • We process the queue by dequeuing each cell, and for each of its neighboring cells, we check if it is within bounds and unvisited.
    • If it's a valid land cell (unvisited), we assign it a height that is one more than the current cell's height and enqueue it for further processing.
  3. Result:

    • After BFS completes, the height matrix will contain the highest possible heights for each cell, respecting the given constraints.

Time Complexity:

  • O(m * n) where m is the number of rows and n is the number of columns. This is because each cell is processed at most once during the BFS traversal.

This solution ensures that the matrix is filled with the correct heights, and the BFS guarantees the maximum height for each cell while maintaining the height difference constraint between adjacent cells.

Contact Links

If you found this series helpful, please consider giving the repository a star on GitHub or sharing the post on your favorite social networks ?. Your support would mean a lot to me!

If you want more helpful content like this, feel free to follow me:

  • LinkedIn
  • GitHub

The above is the detailed content of Map of Highest Peak. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Explain JSON Web Tokens (JWT) and their use case in PHP APIs. Explain JSON Web Tokens (JWT) and their use case in PHP APIs. Apr 05, 2025 am 12:04 AM

JWT is an open standard based on JSON, used to securely transmit information between parties, mainly for identity authentication and information exchange. 1. JWT consists of three parts: Header, Payload and Signature. 2. The working principle of JWT includes three steps: generating JWT, verifying JWT and parsing Payload. 3. When using JWT for authentication in PHP, JWT can be generated and verified, and user role and permission information can be included in advanced usage. 4. Common errors include signature verification failure, token expiration, and payload oversized. Debugging skills include using debugging tools and logging. 5. Performance optimization and best practices include using appropriate signature algorithms, setting validity periods reasonably,

How does session hijacking work and how can you mitigate it in PHP? How does session hijacking work and how can you mitigate it in PHP? Apr 06, 2025 am 12:02 AM

Session hijacking can be achieved through the following steps: 1. Obtain the session ID, 2. Use the session ID, 3. Keep the session active. The methods to prevent session hijacking in PHP include: 1. Use the session_regenerate_id() function to regenerate the session ID, 2. Store session data through the database, 3. Ensure that all session data is transmitted through HTTPS.

Describe the SOLID principles and how they apply to PHP development. Describe the SOLID principles and how they apply to PHP development. Apr 03, 2025 am 12:04 AM

The application of SOLID principle in PHP development includes: 1. Single responsibility principle (SRP): Each class is responsible for only one function. 2. Open and close principle (OCP): Changes are achieved through extension rather than modification. 3. Lisch's Substitution Principle (LSP): Subclasses can replace base classes without affecting program accuracy. 4. Interface isolation principle (ISP): Use fine-grained interfaces to avoid dependencies and unused methods. 5. Dependency inversion principle (DIP): High and low-level modules rely on abstraction and are implemented through dependency injection.

How to debug CLI mode in PHPStorm? How to debug CLI mode in PHPStorm? Apr 01, 2025 pm 02:57 PM

How to debug CLI mode in PHPStorm? When developing with PHPStorm, sometimes we need to debug PHP in command line interface (CLI) mode...

Framework Security Features: Protecting against vulnerabilities. Framework Security Features: Protecting against vulnerabilities. Mar 28, 2025 pm 05:11 PM

Article discusses essential security features in frameworks to protect against vulnerabilities, including input validation, authentication, and regular updates.

How to automatically set permissions of unixsocket after system restart? How to automatically set permissions of unixsocket after system restart? Mar 31, 2025 pm 11:54 PM

How to automatically set the permissions of unixsocket after the system restarts. Every time the system restarts, we need to execute the following command to modify the permissions of unixsocket: sudo...

Explain late static binding in PHP (static::). Explain late static binding in PHP (static::). Apr 03, 2025 am 12:04 AM

Static binding (static::) implements late static binding (LSB) in PHP, allowing calling classes to be referenced in static contexts rather than defining classes. 1) The parsing process is performed at runtime, 2) Look up the call class in the inheritance relationship, 3) It may bring performance overhead.

See all articles