How to Efficiently Select Random Rows in PostgreSQL?
PostgreSQL efficient random row selection method
To select random rows in PostgreSQL, the best method depends on the size of the table, available indexes, and the level of randomness required.
For a very large table with 500 million rows and a numeric ID column (e.g. id):
-
Fastest method:
- Use CTE and
random()
functions to generate random IDs within the ID space. - Join the generated ID with the table using the id column.
- Filter out duplicates and remove redundant IDs.
- Use CTE and
WITH params AS ( SELECT 1 AS min_id, -- 最小id , 5100000 AS id_span -- 四舍五入。(max_id - min_id + buffer) ) SELECT * FROM ( SELECT p.min_id + trunc(random() * p.id_span)::integer AS id FROM params p , generate_series(1, 1100) g -- 1000 + buffer GROUP BY 1 -- 去除重复项 ) r JOIN big USING (id) LIMIT 1000; -- 去除多余项
-
Improvement method:
- Use recursive CTE (
random_pick
) to eliminate any gaps in the ID space. - Merge recursive results to eliminate duplicates.
- Apply external
LIMIT
to satisfy constraints.
- Use recursive CTE (
WITH RECURSIVE random_pick AS ( SELECT * FROM ( SELECT 1 + trunc(random() * 5100000)::int AS id FROM generate_series(1, 1030) -- 1000 + 百分之几 - 根据需要调整 LIMIT 1030 -- 查询规划器提示 ) r JOIN big b USING (id) -- 消除缺失 UNION -- 消除重复项 SELECT b.* FROM ( SELECT 1 + trunc(random() * 5100000)::int AS id FROM random_pick r -- 加上百分之三 - 根据需要调整 LIMIT 999 -- 小于1000,查询规划器提示 ) r JOIN big b USING (id) -- 消除缺失 ) TABLE random_pick LIMIT 1000; -- 实际限制
-
General functions:
- Wrap the above queries into a function so they can be reused for any table with unique integer columns.
CREATE OR REPLACE FUNCTION f_random_sample(_tbl_type anyelement , _id text = 'id' , _limit int = 1000 , _gaps real = 1.03) RETURNS SETOF anyelement LANGUAGE plpgsql VOLATILE ROWS 1000 AS $func$ DECLARE _tbl text := pg_typeof(_tbl_type)::text; _estimate int := (...); BEGIN RETURN QUERY EXECUTE format( $$ WITH RECURSIVE random_pick AS ( SELECT ... FROM ... ... ) TABLE random_pick LIMIT ; $$ , _tbl, _id ) USING (...); END $func$;
For scenarios that don’t require precise randomness or repeated calls:
-
Materialized view:
- Create a materialized view to store approximately randomly selected rows.
- Refresh materialized views periodically.
-
TABLESAMPLE SYSTEM (n)
:- Introduced in PostgreSQL 9.5,
TABLESAMPLE SYSTEM (n)
provides a fast and inexact random sampling method.
The n
parameter represents the percentage of tables to be sampled.
- Introduced in PostgreSQL 9.5,
SELECT * FROM big TABLESAMPLE SYSTEM ((1000 * 100) / 5100000.0);
Other notes:
- For best performance, use an index on the ID column.
- The
random()
functions in PostgreSQL are not cryptographically secure. - The proposed approach provides a high degree of randomness for most practical use cases.
The above is the detailed content of How to Efficiently Select Random Rows in PostgreSQL?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

MySQL and MariaDB can coexist, but need to be configured with caution. The key is to allocate different port numbers and data directories to each database, and adjust parameters such as memory allocation and cache size. Connection pooling, application configuration, and version differences also need to be considered and need to be carefully tested and planned to avoid pitfalls. Running two databases simultaneously can cause performance problems in situations where resources are limited.

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

Data Integration Simplification: AmazonRDSMySQL and Redshift's zero ETL integration Efficient data integration is at the heart of a data-driven organization. Traditional ETL (extract, convert, load) processes are complex and time-consuming, especially when integrating databases (such as AmazonRDSMySQL) with data warehouses (such as Redshift). However, AWS provides zero ETL integration solutions that have completely changed this situation, providing a simplified, near-real-time solution for data migration from RDSMySQL to Redshift. This article will dive into RDSMySQL zero ETL integration with Redshift, explaining how it works and the advantages it brings to data engineers and developers.

LaravelEloquent Model Retrieval: Easily obtaining database data EloquentORM provides a concise and easy-to-understand way to operate the database. This article will introduce various Eloquent model search techniques in detail to help you obtain data from the database efficiently. 1. Get all records. Use the all() method to get all records in the database table: useApp\Models\Post;$posts=Post::all(); This will return a collection. You can access data using foreach loop or other collection methods: foreach($postsas$post){echo$post->

MySQL is suitable for beginners because it is simple to install, powerful and easy to manage data. 1. Simple installation and configuration, suitable for a variety of operating systems. 2. Support basic operations such as creating databases and tables, inserting, querying, updating and deleting data. 3. Provide advanced functions such as JOIN operations and subqueries. 4. Performance can be improved through indexing, query optimization and table partitioning. 5. Support backup, recovery and security measures to ensure data security and consistency.
