Pad in PyTorch
Buy Me a Coffee☕
*Memos:
- My post explains OxfordIIITPet().
Pad() can add padding to zero or more images as shown below:
*Memos:
- The 1st argument for initialization is padding(Required-Type:int or tuple/list(int)):
*Memos:
- It can do add padding.
- A tuple/list must be the 1D with 2 or 4 elements.
- The 2nd argument for initialization is fill(Optional-Default:0-Type:int, float or tuple/list(int or float)):
*Memos:
- It can change the background of images. *The background can be seen when adding padding for images.
- A tuple/list must be the 1D with 3 elements.
- The 3rd argument for initialization is padding_mode(Optional-Default:'constant'-Type:str). *'constant', 'edge', 'reflect' or 'symmetric' can be set to it.
- There is the 1st argument(Required-Type:PIL Image or tensor(int)). *It must be a 3D or more D tensor.
- v2 is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import Pad pad = Pad(padding=100) pad = Pad(padding=100, fill=0, padding_mode='constant') pad # Pad(padding=100, fill=0, padding_mode=constant) pad.padding # 100 pad.fill # 0 pad.padding_mode # 'constant' origin_data = OxfordIIITPet( root="data", transform=None # transform=Pad(padding=0) ) p50_data = OxfordIIITPet( root="data", transform=Pad(padding=50) ) p100_data = OxfordIIITPet( root="data", transform=Pad(padding=100) ) p150_data = OxfordIIITPet( root="data", transform=Pad(padding=150) ) m50_data = OxfordIIITPet( root="data", transform=Pad(padding=-50) ) m100_data = OxfordIIITPet( root="data", transform=Pad(padding=-100) ) m150_data = OxfordIIITPet( root="data", transform=Pad(padding=-150) ) p100p50_data = OxfordIIITPet( root="data", transform=Pad(padding=[100, 50]) ) m100m50_data = OxfordIIITPet( root="data", transform=Pad(padding=[-100, -50]) ) p100m50_data = OxfordIIITPet( root="data", transform=Pad(padding=[100, -50]) ) p25p50p75p100_data = OxfordIIITPet( root="data", transform=Pad(padding=[25, 50, 75, 100]) ) m25m50m75m100_data = OxfordIIITPet( root="data", transform=Pad(padding=[-25, -50, -75, -100]) ) p25m50p75m100_data = OxfordIIITPet( root="data", transform=Pad(padding=[25, -50, 75, -100]) ) p100fillgray_data = OxfordIIITPet( root="data", transform=Pad(padding=100, fill=150) ) p100fillpurple_data = OxfordIIITPet( root="data", transform=Pad(padding=100, fill=[160, 32, 240]) ) p100edge_data = OxfordIIITPet( root="data", transform=Pad(padding=100, padding_mode="edge") ) p100reflect_data = OxfordIIITPet( root="data", transform=Pad(padding=100, padding_mode="reflect") ) p100symmetric_data = OxfordIIITPet( root="data", transform=Pad(padding=100, padding_mode="symmetric") ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title='origin_data') show_images1(data=p50_data, main_title='p50_data') show_images1(data=p100_data, main_title='p100_data') show_images1(data=p150_data, main_title='p150_data') print() show_images1(data=origin_data, main_title='origin_data') show_images1(data=m50_data, main_title='m50_data') show_images1(data=m100_data, main_title='m100_data') show_images1(data=m150_data, main_title='m150_data') print() show_images1(data=origin_data, main_title='origin_data') show_images1(data=p100p50_data, main_title='p100p50_data') show_images1(data=m100m50_data, main_title='m100m50_data') show_images1(data=p100m50_data, main_title='p100m50_data') print() show_images1(data=origin_data, main_title='origin_data') show_images1(data=p25p50p75p100_data, main_title='p25p50p75p100_data') show_images1(data=m25m50m75m100_data, main_title='m25m50m75m100_data') show_images1(data=p25m50p75m100_data, main_title='p25m50p75m100_data') print() show_images1(data=p100fillgray_data, main_title='p100fillgray_data') show_images1(data=p100fillpurple_data, main_title='p100fillpurple_data') print() show_images1(data=p100edge_data, main_title='p100edge_data') show_images1(data=p100reflect_data, main_title='p100reflect_data') show_images1(data=p100symmetric_data, main_title='p100symmetric_data') # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, p=0, f=0, pm='constant'): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) pad = Pad(padding=p, fill=f, padding_mode=pm) # Here plt.imshow(X=pad(im)) # Here plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images2(data=origin_data, main_title='origin_data') show_images2(data=origin_data, main_title='p50_data', p=50) show_images2(data=origin_data, main_title='p100_data', p=100) show_images2(data=origin_data, main_title='p150_data', p=150) print() show_images2(data=origin_data, main_title='origin_data') show_images2(data=origin_data, main_title='m50_data', p=-50) show_images2(data=origin_data, main_title='m100_data', p=-100) show_images2(data=origin_data, main_title='m150_data', p=-150) print() show_images2(data=origin_data, main_title='origin_data') show_images2(data=origin_data, main_title='p100p50_data', p=[100, 50]) show_images2(data=origin_data, main_title='m100m50_data', p=[-100, -50]) show_images2(data=origin_data, main_title='p100m50_data', p=[100, -50]) print() show_images2(data=origin_data, main_title='origin_data') show_images2(data=origin_data, main_title='p25p50p75p100_data', p=[25, 50, 75, 100]) show_images2(data=origin_data, main_title='m25m50m75m100_data', p=[-25, -50, -75, -100]) show_images2(data=origin_data, main_title='p25m50p75m100_data', p=[25, -50, 75, -100]) print() show_images2(data=origin_data, main_title='p100fillgray_data', p=100, f=[150]) show_images2(data=origin_data, main_title='p100fillpurple_data', p=100, f=[160, 32, 240]) print() show_images2(data=origin_data, main_title='p100edge_data', p=100, pm='edge') show_images2(data=origin_data, main_title='p100reflect_data', p=100, pm='reflect') show_images2(data=origin_data, main_title='p100symmetric_data', p=100, pm='symmetric')
The above is the detailed content of Pad in PyTorch. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

Fastapi ...

Using python in Linux terminal...

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

About Pythonasyncio...

Understanding the anti-crawling strategy of Investing.com Many people often try to crawl news data from Investing.com (https://cn.investing.com/news/latest-news)...

Loading pickle file in Python 3.6 environment error: ModuleNotFoundError:Nomodulenamed...

Discussion on the reasons why pipeline files cannot be written when using Scapy crawlers When learning and using Scapy crawlers for persistent data storage, you may encounter pipeline files...
