CocoCaptions in PyTorch (1)
Buy Me a Coffee☕
*Memos:
- My post explains CocoDetection() using train2014 with captions_train2014.json, instances_train2014.json and person_keypoints_train2014.json, val2014 with captions_val2014.json, instances_val2014.json and person_keypoints_val2014.json and test2017 with image_info_test2014.json, image_info_test2015.json and image_info_test-dev2015.json.
- My post explains CocoDetection() using train2017 with captions_train2017.json, instances_train2017.json and person_keypoints_train2017.json, val2017 with captions_val2017.json, instances_val2017.json and person_keypoints_val2017.json and test2017 with image_info_test2017.json and image_info_test-dev2017.json.
- My post explains CocoDetection() using train2017 with stuff_train2017.json, val2017 with stuff_val2017.json, stuff_train2017_pixelmaps with stuff_train2017.json, stuff_val2017_pixelmaps with stuff_val2017.json, panoptic_train2017 with panoptic_train2017.json, panoptic_val2017 with panoptic_val2017.json and unlabeled2017 with image_info_unlabeled2017.json.
- My post explains MS COCO.
CocoCaptions() can use MS COCO dataset as shown below. *This is for train2014 with captions_train2014.json, instances_train2014.json and person_keypoints_train2014.json, val2014 with captions_val2014.json, instances_val2014.json and person_keypoints_val2014.json and test2017 with image_info_test2014.json, image_info_test2015.json and image_info_test-dev2015.json:
*Memos:
- The 1st argument is root(Required-Type:str or pathlib.Path):
*Memos:
- It's the path to the images.
- An absolute or relative path is possible.
- The 2nd argument is annFile(Required-Type:str or pathlib.Path):
*Memos:
- It's the path to the annotations.
- An absolute or relative path is possible.
- The 3rd argument is transform(Optional-Default:None-Type:callable).
- The 4th argument is target_transform(Optional-Default:None-Type:callable).
- The 5th argument is transforms(Optional-Default:None-Type:callable).
from torchvision.datasets import CocoCaptions cap_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json" ) cap_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json", transform=None, target_transform=None, transforms=None ) ins_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/instances_train2014.json" ) pk_train2014_data = CocoCaptions( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/person_keypoints_train2014.json" ) len(cap_train2014_data), len(ins_train2014_data), len(pk_train2014_data) # (82783, 82783, 82783) cap_val2014_data = CocoCaptions( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/captions_val2014.json" ) ins_val2014_data = CocoCaptions( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/instances_val2014.json" ) pk_val2014_data = CocoCaptions( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/person_keypoints_val2014.json" ) len(cap_val2014_data), len(ins_val2014_data), len(pk_val2014_data) # (40504, 40504, 40504) test2014_data = CocoCaptions( root="data/coco/imgs/test2014", annFile="data/coco/anns/test2014/image_info_test2014.json" ) test2015_data = CocoCaptions( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/image_info_test2015.json" ) testdev2015_data = CocoCaptions( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/image_info_test-dev2015.json" ) len(test2014_data), len(test2015_data), len(testdev2015_data) # (40775, 81434, 20288) cap_train2014_data # Dataset CocoCaptions # Number of datapoints: 82783 # Root location: data/coco/imgs/train2014 cap_train2014_data.root # 'data/coco/imgs/train2014' print(cap_train2014_data.transform) # None print(cap_train2014_data.target_transform) # None print(cap_train2014_data.transforms) # None cap_train2014_data.coco # <pycocotools.coco.COCO at 0x759028ee1d00> cap_train2014_data[26] # (<PIL.Image.Image image mode=RGB size=427x640>, # ['three zeebras standing in a grassy field walking', # 'Three zebras are standing in an open field.', # 'Three zebra are walking through the grass of a field.', # 'Three zebras standing on a grassy dirt field.', # 'Three zebras grazing in green grass field area.']) cap_train2014_data[179] # (<PIL.Image.Image image mode=RGB size=480x640>, # ['a young guy walking in a forrest holding an object in his hand', # 'A partially black and white photo of a man throwing ... the woods.', # 'A disc golfer releases a throw from a dirt tee ... wooded course.', # 'The person is in the clearing of a wooded area. ', # 'a person throwing a frisbee at many trees ']) cap_train2014_data[194] # (<PIL.Image.Image image mode=RGB size=428x640>, # ['A person on a court with a tennis racket.', # 'A man that is holding a racquet standing in the grass.', # 'A tennis player hits the ball during a match.', # 'The tennis player is poised to serve a ball.', # 'Man in white playing tennis on a court.']) ins_train2014_data[26] # Error ins_train2014_data[179] # Error ins_train2014_data[194] # Error pk_train2014_data[26] # (<PIL.Image.Image image mode=RGB size=427x640>, []) pk_train2014_data[179] # Error pk_train2014_data[194] # Error cap_val2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, # ['a close up of a child next to a cake with balloons', # 'A baby sitting in front of a cake wearing a tie.', # 'The young boy is dressed in a tie that matches his cake. ', # 'A child eating a birthday cake near some balloons.', # 'A baby eating a cake with a tie around ... the background.']) cap_val2014_data[179] # (<PIL.Image.Image image mode=RGB size=500x302>, # ['Many small children are posing together in the ... white photo. ', # 'A vintage school picture of grade school aged children.', # 'A black and white photo of a group of kids.', # 'A group of children standing next to each other.', # 'A group of children standing and sitting beside each other. ']) cap_val2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x427>, # ['A man hitting a tennis ball with a racquet.', # 'champion tennis player swats at the ball hoping to win', # 'A man is hitting his tennis ball with a recket on the court.', # 'a tennis player on a court with a racket', # 'A professional tennis player hits a ball as fans watch.']) ins_val2014_data[26] # Error ins_val2014_data[179] # Error ins_val2014_data[194] # Error pk_val2014_data[26] # Error pk_val2014_data[179] # Error pk_val2014_data[194] # Error test2014_data[26] # (<PIL.Image.Image image mode=RGB size=640x640>, []) test2014_data[179] # (<PIL.Image.Image image mode=RGB size=640x480>, []) test2014_data[194] # (<PIL.Image.Image image mode=RGB size=640x360>, []) test2015_data[26] # (<PIL.Image.Image image mode=RGB size=640x480>, []) test2015_data[179] # (<PIL.Image.Image image mode=RGB size=640x426>, []) test2015_data[194] # (<PIL.Image.Image image mode=RGB size=640x480>, []) testdev2015_data[26] # (<PIL.Image.Image image mode=RGB size=640x360>, []) testdev2015_data[179] # (<PIL.Image.Image image mode=RGB size=640x480>, []) testdev2015_data[194] # (<PIL.Image.Image image mode=RGB size=640x480>, []) import matplotlib.pyplot as plt from matplotlib.patches import Polygon, Rectangle import numpy as np from pycocotools import mask def show_images(data, ims, main_title=None): file = data.root.split('/')[-1] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8)) fig.suptitle(t=main_title, y=0.9, fontsize=14) x_crd = 0.02 for i, axis in zip(ims, axes.ravel()): if data[i][1]: im, anns = data[i] axis.imshow(X=im) y_crd = 0.0 for j, ann in enumerate(iterable=anns): text_list = ann.split() if len(text_list) > 9: text = " ".join(text_list[0:10]) + " ..." else: text = " ".join(text_list) plt.figtext(x=x_crd, y=y_crd, fontsize=10, s=f'{j} : {text}') y_crd -= 0.06 x_crd += 0.325 if i == 2 and file == "val2017": x_crd += 0.06 elif not data[i][1]: im, _ = data[i] axis.imshow(X=im) fig.tight_layout() plt.show() ims = (26, 179, 194) show_images(data=cap_train2014_data, ims=ims, main_title="cap_train2014_data") show_images(data=cap_val2014_data, ims=ims, main_title="cap_val2014_data") show_images(data=test2014_data, ims=ims, main_title="test2014_data") show_images(data=test2015_data, ims=ims, main_title="test2015_data") show_images(data=testdev2015_data, ims=ims, main_title="testdev2015_data")
The above is the detailed content of CocoCaptions in PyTorch (1). For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code
