Generator Concurrency Pattern in Go: A Comprehensive Guide
1. Run Every Example: Don't just read the code. Type it out, run it, and observe the behavior.⚠️ How to go about this series?
2. Experiment and Break Things: Remove sleeps and see what happens, change channel buffer sizes, modify goroutine counts.
Breaking things teaches you how they work
3. Reason About Behavior: Before running modified code, try predicting the outcome. When you see unexpected behavior, pause and think why. Challenge the explanations.
4. Build Mental Models: Each visualization represents a concept. Try drawing your own diagrams for modified code.
In our previous post, we explored the basics of goroutines and channels, the building blocks of Go's concurrency. Read here:

Understanding and visualizing Goroutines and Channels in Golang
Souvik Kar Mahapatra ・ Dec 20
Now, let's look at how these primitives combine to form powerful patterns that solve real-world problems.
In this post we'll cover Generator Pattern and will try to visualize them. So let's gear up as we'll be hands on through out the process.
Generator Pattern
A generator is like a fountain that continuously produces values that we can consume whenever needed.
In Go, it's a function that produces a stream of values and sends them through a channel, allowing other parts of our program to receive these values on demand.
Let's look at an example:
// generateNumbers creates a generator that produces numbers from 1 to max func generateNumbers(max int) chan int { // Create a channel to send numbers out := make(chan int) // Launch a goroutine to generate numbers go func() { // Important: Always close the channel when done defer close(out) for i := 1; i <= max; i++ { out <- i // Send number to channel } }() // Return channel immediately return out } // Using the generator func main() { // Create a generator that produces numbers 1-5 numbers := generateNumbers(5) // Receive values from the generator for num := range numbers { fmt.Println("Received:", num) } }
In this example, our generator function does three key things:
- Creates a channel to send values
- Launches a goroutine to generate values
- Returns the channel immediately for consumers to use
Why Use Generators?
- Separate value production from consumption
- Generate values on-demand (lazy evaluation)
- Can represent infinite sequences without consuming infinite memory
- Allow concurrent production and consumption of values
Real-world Use Case
Reading large files line by line:
func generateLines(filename string) chan string { out := make(chan string) go func() { defer close(out) file, err := os.Open(filename) if err != nil { return } defer file.Close() scanner := bufio.NewScanner(file) for scanner.Scan() { out <- scanner.Text() } }() return out }
Now you might be thinking, what's so special about it? we can do the same like generating sequence of data or read line by line without goroutines. Isn't it an overkill? Let's try to visualize both cases:
Without the goroutines
// Traditional approach func getNumbers(max int) []int { numbers := make([]int, max) for i := 1; i <= max; i++ { numbers[i-1] = i // Imagine some heavy computation here time.Sleep(100 * time.Millisecond) } return numbers }
Here you have to wait for everything to be ready before you can start processing.
With goroutines
// Generator approach func generateNumbers(max int) chan int { out := make(chan int) go func() { defer close(out) for i := 1; i <= max; i++ { out <- i // Same heavy computation time.Sleep(100 * time.Millisecond) } }() return out }
You can start processing the data while the data is still being generated.
Key Benefits of Generator Pattern:
Non-Blocking Execution: Generation and processing happen simultaneously
Memory Efficiency: Can generate and process one value at a time, no need to store in the memory right away
Infinite Sequences: Can generate infinite sequences without memory issues
Backpressure Handling: If your consumer is slow, the generator naturally slows down (due to channel blocking), preventing memory overload.
// generateNumbers creates a generator that produces numbers from 1 to max func generateNumbers(max int) chan int { // Create a channel to send numbers out := make(chan int) // Launch a goroutine to generate numbers go func() { // Important: Always close the channel when done defer close(out) for i := 1; i <= max; i++ { out <- i // Send number to channel } }() // Return channel immediately return out } // Using the generator func main() { // Create a generator that produces numbers 1-5 numbers := generateNumbers(5) // Receive values from the generator for num := range numbers { fmt.Println("Received:", num) } }
Common Pitfalls and Solutions
- Forgetting to Close Channels
func generateLines(filename string) chan string { out := make(chan string) go func() { defer close(out) file, err := os.Open(filename) if err != nil { return } defer file.Close() scanner := bufio.NewScanner(file) for scanner.Scan() { out <- scanner.Text() } }() return out }
- Not Handling Errors
// Traditional approach func getNumbers(max int) []int { numbers := make([]int, max) for i := 1; i <= max; i++ { numbers[i-1] = i // Imagine some heavy computation here time.Sleep(100 * time.Millisecond) } return numbers }
- Resource Leaks: When using generators with resources (like files), ensure proper cleanup:
// Generator approach func generateNumbers(max int) chan int { out := make(chan int) go func() { defer close(out) for i := 1; i <= max; i++ { out <- i // Same heavy computation time.Sleep(100 * time.Millisecond) } }() return out }
That's all for the generator pattern. Up next is Pipeline concurrency pattern. Stay tuned to clear your concepts on Golang concurrency.
Did I miss something? Got questions? Got something interesting to share? All comments are welcomed.
The above is the detailed content of Generator Concurrency Pattern in Go: A Comprehensive Guide. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

Under the BeegoORM framework, how to specify the database associated with the model? Many Beego projects require multiple databases to be operated simultaneously. When using Beego...

The difference between string printing in Go language: The difference in the effect of using Println and string() functions is in Go...

The problem of using RedisStream to implement message queues in Go language is using Go language and Redis...

What should I do if the custom structure labels in GoLand are not displayed? When using GoLand for Go language development, many developers will encounter custom structure tags...
