Table of Contents
InterSystems Cloud Document Deployment
Ingestion
Databricks
Visualization
Home Backend Development Python Tutorial Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

Jan 01, 2025 am 02:48 AM

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

Plotting the gnSSLocation data from my Rivian R1S across Michigan with InterSystems Cloud Document and Databricks

If you been looking for a use case for a Document Database, I came to the realization my favorite dead simple one is the ability to query a pile of JSON, right along side my other data with sql without really doing much. Which is the dream realized from the powerful Multi Model InterSystems Data Platform, and shown here in a simple notebook to visualize my geo location data my Rivian R1S is emitting for DeezWatts ( A Rivian Data Adventure ).

So here is the 2 step approach, Ingestion to and Visualization from InterSystems Cloud Document, using the JDBC document driver.

InterSystems Cloud Document Deployment

For starters, I fired up a small Cloud Document deployment on the InterSystems Cloud Services Portal, with an enabled listener.

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

I downloaded the ssl certificate, and snagged the drivers for JDBC and accompanying document driver as well.

Ingestion

For ingestion, I wanted to get a grip on how to lift a JSON document from the file system and persist it as a collection in the document database over the listener, for this I wrote a standalone java app. This was more utility as the fun all happened in the notebook after the data was up in there.
 

 
RivianDocDB.java

package databricks_rivian_irisdocdb;

import java.sql.SQLException;
import com.intersystems.document.*;
import com.fasterxml.jackson.core.JsonParser;
import com.fasterxml.jackson.*;
import java.io.IOException;
import java.io.InputStream;
import java.io.File;
import java.io.FileInputStream;
import org.apache.commons.io.IOUtils;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.stream.Stream;

public <span>class RivianDocDb </span>{
  <span>public static void main(String[] args) </span>{

    String directoryPath =
"/home/sween/Desktop/POP2/DEEZWATTS/rivian-iris-docdb/databricks_rivian_irisdocdb/in/json/";

    DataSource datasrc = DataSource.createDataSource();
    datasrc.setPortNumber(443);
    datasrc.setServerName("k8s-05868f04-a88b7ecb-5c5e41660d-404345a22ba1370c.elb.us-east-1.amazonaws.com");
    datasrc.setDatabaseName("USER");
    datasrc.setUser("SQLAdmin");
    datasrc.setPassword("REDACTED");

    try {
      datasrc.setConnectionSecurityLevel(10);
    } catch (SQLException e) {
      // TODO Auto-generated catch block
      e.printStackTrace();
    }

    System.out.println("\nCreated datasrc\n");
    System.out.println(datasrc);
    datasrc.preStart(2);
    System.out.println("\nDataSource size =" + datasrc.getSize());

    // creates the collection if it dont exist
    Collection collectedDocs =
Collection.getCollection(datasrc,"deezwatts2");

    try (Stream<Path> paths = Files.list(Paths.get(directoryPath))) {
        paths.filter(Files::isRegularFile)
             .forEach(path -> {
                 File file = path.toFile();
             });
    } catch (IOException e) {
        e.printStackTrace();
    }

    File directory = new File(directoryPath);
    if (directory.isDirectory()) {
        File[] files = directory.listFiles();
        if (files != null) {
            for (File file : files) {
                if (file.isFile()) {

                    try (InputStream is = new
FileInputStream("/home/sween/Desktop/POP2/DEEZWATTS/rivian-iris-docdb/databricks_rivian_irisdocdb/in/json/"
+ file.getName())) {
                      String jsonTxt = IOUtils.toString(is, "UTF-8");
                      
                      Document doc2 = JSONObject.fromJSONString(jsonTxt);
                      // top level key is whip2
                      Document doc3 = new JSONObject().put("whip2",doc2);

                      collectedDocs.insert(doc3);
                    } catch (IOException e) {
                      // TODO Auto-generated catch block
                      e.printStackTrace();
                    }

                }
            }
        }
    }


    long size = collectedDocs.size();
    System.out.println(Long.toString(size));
    System.out.println("\nIngested Documents =" + datasrc.getSize());
Copy after login
Copy after login

 

The above is quite close to JAVA trash, but worked, we can see the collection in the collection browser in the deployment.

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

Databricks

Now this takes a little bit of Databricks setup, but is well worth it to work with pyspark for the fun part.

I added the two InterSystems drivers to the cluster, and put the certificate in the import_cloudsql_certficiate.sh cluster init script so it gets added to the keystore.

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks
For completeness, the cluster is running Databricks 16, Spark 3.5.0 and Scala 2.12

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

Visualization

So we should be set to run a PySpark job and plot where my whip has been in the subset of data Ill drag in.

We are using geopandas and geodatasets for a straight forward approach to plotting.

package databricks_rivian_irisdocdb;

import java.sql.SQLException;
import com.intersystems.document.*;
import com.fasterxml.jackson.core.JsonParser;
import com.fasterxml.jackson.*;
import java.io.IOException;
import java.io.InputStream;
import java.io.File;
import java.io.FileInputStream;
import org.apache.commons.io.IOUtils;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.stream.Stream;

public <span>class RivianDocDb </span>{
  <span>public static void main(String[] args) </span>{

    String directoryPath =
"/home/sween/Desktop/POP2/DEEZWATTS/rivian-iris-docdb/databricks_rivian_irisdocdb/in/json/";

    DataSource datasrc = DataSource.createDataSource();
    datasrc.setPortNumber(443);
    datasrc.setServerName("k8s-05868f04-a88b7ecb-5c5e41660d-404345a22ba1370c.elb.us-east-1.amazonaws.com");
    datasrc.setDatabaseName("USER");
    datasrc.setUser("SQLAdmin");
    datasrc.setPassword("REDACTED");

    try {
      datasrc.setConnectionSecurityLevel(10);
    } catch (SQLException e) {
      // TODO Auto-generated catch block
      e.printStackTrace();
    }

    System.out.println("\nCreated datasrc\n");
    System.out.println(datasrc);
    datasrc.preStart(2);
    System.out.println("\nDataSource size =" + datasrc.getSize());

    // creates the collection if it dont exist
    Collection collectedDocs =
Collection.getCollection(datasrc,"deezwatts2");

    try (Stream<Path> paths = Files.list(Paths.get(directoryPath))) {
        paths.filter(Files::isRegularFile)
             .forEach(path -> {
                 File file = path.toFile();
             });
    } catch (IOException e) {
        e.printStackTrace();
    }

    File directory = new File(directoryPath);
    if (directory.isDirectory()) {
        File[] files = directory.listFiles();
        if (files != null) {
            for (File file : files) {
                if (file.isFile()) {

                    try (InputStream is = new
FileInputStream("/home/sween/Desktop/POP2/DEEZWATTS/rivian-iris-docdb/databricks_rivian_irisdocdb/in/json/"
+ file.getName())) {
                      String jsonTxt = IOUtils.toString(is, "UTF-8");
                      
                      Document doc2 = JSONObject.fromJSONString(jsonTxt);
                      // top level key is whip2
                      Document doc3 = new JSONObject().put("whip2",doc2);

                      collectedDocs.insert(doc3);
                    } catch (IOException e) {
                      // TODO Auto-generated catch block
                      e.printStackTrace();
                    }

                }
            }
        }
    }


    long size = collectedDocs.size();
    System.out.println(Long.toString(size));
    System.out.println("\nIngested Documents =" + datasrc.getSize());
Copy after login
Copy after login

Now, this takes a little bit to get used to, but here is the query to InterSystems Cloud Document using the JSON paths syntax and JSON_TABLE.

import geopandas as gpd
import geodatasets
from shapely.geometry import Polygon
Copy after login

 

I did manage to find a site that made it dead simple to create the json path @ jsonpath.com.

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

Next we setup the connection to the IRIS Document Database Deployment and read it into a dataframe.

dbtablequery = f"(SELECT TOP 1000 lat,longitude FROM JSON_TABLE(deezwatts2 FORMAT COLLECTION, '$' COLUMNS (lat VARCHAR(20) path '$.whip2.data.vehicleState.gnssLocation.latitude', longitude VARCHAR(20) path '$.whip2.data.vehicleState.gnssLocation.longitude' ))) AS temp_table;"
Copy after login


Next we grab an available map from geodatasets, the sdoh one is great for generic use of the united states.
 

# Read data from InterSystems Document Database via query above
df = (spark.read.format("jdbc") \
  .option("url", "jdbc:IRIS://k8s-05868f04-a88b7ecb-5c5e41660d-404345a22ba1370c.elb.us-east-1.amazonaws.com:443/USER") \
  .option("jars", "/Volumes/cloudsql/iris/irisvolume/intersystems-document-1.0.1.jar") \
  .option("driver", "com.intersystems.jdbc.IRISDriver") \
  .option("dbtable", dbtablequery) \
  .option("sql", "SELECT * FROM temp_table;") \
  .option("user", "SQLAdmin") \
  .option("password", "REDACTED") \
  .option("connection security level","10") \
  .option("sslConnection","true") \
  .load())
Copy after login

Now the cool part, we want to zoom in on where we want to contain the geo location points of where the R1S has driven, for this we need a bounding box for the state of Michigan.

For this I used a really slick tool from Keene to draw the geo fence bounding box and it gives me the coordinates array!

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

Now that we have the coordinates array of the bounding box, we need slap them into a Polygon object.

# sdoh map is fantastic with bounding boxes
michigan = gpd.read_file(geodatasets.get_path("geoda.us_sdoh"))

gdf = gpd.GeoDataFrame(
    df.toPandas(), 
    geometry=gpd.points_from_xy(df.toPandas()['longitude'].astype(float), df.toPandas()['lat'].astype(float)), 
    crs=michigan.crs #"EPSG:4326"
)
Copy after login

 

Now, lets plot the trail of the Rivian R1S! This will be for about 10,000 records (I used a top statement above to limit the results)
 

polygon = Polygon([
      (
        -87.286377,
        45.9664245
      ),
      (
        -81.6503906,
        45.8134865
      ),
      (
        -82.3864746,
        42.1063737
      ),
      (
        -84.7814941,
        41.3520721
      ),
      (
        -87.253418,
        42.5045029
      ),
      (
        -87.5610352,
        45.8823607
      )
    ])
Copy after login

 

And there we have it... Detroit, Traverse City, Silver Lake Sand Dunes, Holland, Mullet Lake, Interlachen... Pure Michigan, Rivian style.

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

The above is the detailed content of Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1670
14
PHP Tutorial
1276
29
C# Tutorial
1256
24
Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python vs. C  : Exploring Performance and Efficiency Python vs. C : Exploring Performance and Efficiency Apr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Learning Python: Is 2 Hours of Daily Study Sufficient? Learning Python: Is 2 Hours of Daily Study Sufficient? Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python vs. C  : Understanding the Key Differences Python vs. C : Understanding the Key Differences Apr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Which is part of the Python standard library: lists or arrays? Which is part of the Python standard library: lists or arrays? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python for Web Development: Key Applications Python for Web Development: Key Applications Apr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

See all articles