Home Backend Development Golang Building a Robust Task Execution Context in Go

Building a Robust Task Execution Context in Go

Jan 01, 2025 am 01:02 AM

Building a Robust Task Execution Context in Go

This might be my last take on error handling in go. I think this is the best one as well. We know every instruction that we execute is in a context. And the context can have errors. This is when I thought why not simply make a wrapper on top of the current context. So, all the task if executed via a specific fn then we could possibly check if the ctx has error and if so dont execute else execute and collect the error. This might become an anti-pattern but yeah until it becomes, we can try playing around.

Well cursor had few things to add ->

The Problem

Consider these common challenges when dealing with concurrent tasks:

  1. Collecting errors from multiple goroutines
  2. Maintaining thread safety
  3. Limiting concurrent executions
  4. Preserving the first error while collecting all errors
  5. Clean error handling patterns

The Solution: TaskContext

Let's build a TaskContext that solves these problems:

package taskctx

import (
    "context"
    "errors"
    "fmt"
    "sync"
)

type RunFn[T any] func() (T, error)

type TaskContext struct {
    context.Context
    mu       sync.RWMutex
    err      error
    multiErr []error
}

func NewTaskContext(parent context.Context) *TaskContext {
    if parent == nil {
        panic("cannot create context from nil parent")
    }
    return &TaskContext{Context: parent}
}
Copy after login

Key Features

1. Thread-Safe Error Handling

func (c *TaskContext) WithError(err error) *TaskContext {
    if err == nil {
        return c
    }

    c.mu.Lock()
    defer c.mu.Unlock()

    c.multiErr = append(c.multiErr, err)
    if c.err == nil {
        c.err = err
    } else {
        c.err = errors.Join(c.err, err)
    }
    return c
}
Copy after login

2. Single Task Execution

func Run[T any](ctx *TaskContext, fn RunFn[T]) T {
    var zero T
    if err := ctx.Err(); err != nil {
        return zero
    }

    result, err := fn()
    if err != nil {
        ctx.WithError(err)
        return zero
    }
    return result
}
Copy after login

3. Parallel Task Execution

func RunParallel[T any](ctx *TaskContext, fns ...func() (T, error)) ([]T, error) {
    if err := ctx.Err(); err != nil {
        return nil, err
    }

    results := make([]T, len(fns))
    var resultsMu sync.Mutex
    var wg sync.WaitGroup
    wg.Add(len(fns))

    for i, fn := range fns {
        i, fn := i, fn
        go func() {
            defer wg.Done()
            result, err := fn()
            if err != nil {
                ctx.AddError(fmt.Errorf("task %d: %w", i+1, err))
            } else {
                resultsMu.Lock()
                results[i] = result
                resultsMu.Unlock()
            }
        }()
    }

    wg.Wait()
    return results, ctx.Errors()
}
Copy after login

4. Controlled Concurrency

func RunParallelWithLimit[T any](ctx *TaskContext, limit int, fns ...func() (T, error)) ([]T, error) {
    // ... similar to RunParallel but with semaphore ...
    sem := make(chan struct{}, limit)
    // ... implementation ...
}
Copy after login

Usage Examples

Simple Task Execution

func ExampleTaskContext_ShipmentProcessing() {
    ctx := goctx.NewTaskContext(context.Background())

    order := dummyOrder()
    shipment := dummyShipment()

    // Step 1: Validate address
    // Step 2: Calculate shipping cost
    // Step 3: Generate label
    _ = goctx.Run(ctx, validateAddress("123 Main St"))
    cost := goctx.Run(ctx, calculateShipping(order))
    trackingNum := goctx.Run(ctx, generateLabel(shipment.OrderID, cost))

    if ctx.Err() != nil {
        fmt.Printf("Error: %v\n", ctx.Err())
        return
    }

    shipment.Status = "READY"
    shipment.TrackingNum = trackingNum
    fmt.Printf("Shipment processed: %+v\n", shipment)

    // Output:
    // Shipment processed: {OrderID:ORD123 Status:READY TrackingNum:TRACK-ORD123-1234567890}
}
Copy after login

Parallel Task Execution

func ExampleTaskContext_OrderProcessing() {
    ctx := goctx.NewTaskContext(context.Background())

    // Mock order
    order := []OrderItem{
        {ProductID: "LAPTOP", Quantity: 2},
        {ProductID: "MOUSE", Quantity: 3},
    }

    taskCtx := goctx.NewTaskContext(ctx)

    // Create inventory checks for each item
    inventoryChecks := goctx.Run[[]goctx.RunFn[bool]](taskCtx,
        func() ([]goctx.RunFn[bool], error) {
            return streams.NewTransformer[OrderItem, goctx.RunFn[bool]](order).
                Transform(streams.MapItSimple(checkInventory)).
                Result()
        })

    // Run inventory checks in parallel
    _, err := goctx.RunParallel(ctx, inventoryChecks...)
    fmt.Printf("Inventory check error: %v\n", err)

    // Output:
    // Inventory check error: task 1: insufficient inventory for LAPTOP
}
Copy after login

Benefits

  1. Thread Safety: All operations are protected by mutexes
  2. Error Collection: Maintains both first error and all errors
  3. Context Integration: Works with Go's context package
  4. Generic Support: Works with any return type
  5. Concurrency Control: Built-in support for limiting parallel executions

Testing

Here's how to test the implementation:

func TestTaskContext(t *testing.T) {
    t.Run("handles parallel errors", func(t *testing.T) {
        ctx := NewTaskContext(context.Background())
        _, err := RunParallel(ctx,
            func() (int, error) { return 0, errors.New("error 1") },
            func() (int, error) { return 0, errors.New("error 2") },
        )
        assert.Error(t, err)
        assert.Contains(t, err.Error(), "error 1")
        assert.Contains(t, err.Error(), "error 2")
    })
}
Copy after login

Conclusion

This TaskContext implementation provides a robust solution for handling concurrent task execution with proper error handling in Go. It's particularly useful when you need to:

  • Execute multiple tasks concurrently
  • Collect errors from all tasks
  • Limit concurrent executions
  • Maintain thread safety
  • Keep track of the first error while collecting all errors

The complete code is available on GitHub.

Resources

  • Go Context Package
  • Go Concurrency Patterns
  • Error Handling in Go

What patterns do you use for handling concurrent task execution in Go? Share your thoughts in the comments below!

  • https://x.com/mahadev_k_
  • https://in.linkedin.com/in/mahadev-k-934520223

The above is the detailed content of Building a Robust Task Execution Context in Go. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What are the vulnerabilities of Debian OpenSSL What are the vulnerabilities of Debian OpenSSL Apr 02, 2025 am 07:30 AM

OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

Transforming from front-end to back-end development, is it more promising to learn Java or Golang? Transforming from front-end to back-end development, is it more promising to learn Java or Golang? Apr 02, 2025 am 09:12 AM

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

What is the problem with Queue thread in Go's crawler Colly? What is the problem with Queue thread in Go's crawler Colly? Apr 02, 2025 pm 02:09 PM

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

What libraries are used for floating point number operations in Go? What libraries are used for floating point number operations in Go? Apr 02, 2025 pm 02:06 PM

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

How to specify the database associated with the model in Beego ORM? How to specify the database associated with the model in Beego ORM? Apr 02, 2025 pm 03:54 PM

Under the BeegoORM framework, how to specify the database associated with the model? Many Beego projects require multiple databases to be operated simultaneously. When using Beego...

In Go, why does printing strings with Println and string() functions have different effects? In Go, why does printing strings with Println and string() functions have different effects? Apr 02, 2025 pm 02:03 PM

The difference between string printing in Go language: The difference in the effect of using Println and string() functions is in Go...

How to solve the user_id type conversion problem when using Redis Stream to implement message queues in Go language? How to solve the user_id type conversion problem when using Redis Stream to implement message queues in Go language? Apr 02, 2025 pm 04:54 PM

The problem of using RedisStream to implement message queues in Go language is using Go language and Redis...

What should I do if the custom structure labels in GoLand are not displayed? What should I do if the custom structure labels in GoLand are not displayed? Apr 02, 2025 pm 05:09 PM

What should I do if the custom structure labels in GoLand are not displayed? When using GoLand for Go language development, many developers will encounter custom structure tags...

See all articles