Places in PyTorch
Buy Me a Coffee☕
*My post explains Places365.
Places365() can use Places365 dataset as shown below:
*Memos:
- The 1st argument is root(Required-Type:str or pathlib.Path). *An absolute or relative path is possible.
- The 2nd argument is split(Optional-Default:"train-standard"-Type:str). *"train-standard"(1,803,460 images), "train-challenge"(8,026,628 images) or "val"(36,500 images) can be set to it. "test"(328,500 images) isn't supported so I requested the feature on GitHub.
- The 3rd argument is small(Optional-Default:False-Type:bool).
- The 4th argument is download(Optional-Default:False-Type:bool):
*Memos:
- If it's True, the dataset is downloaded from the internet and extracted(unzipped) to root.
- If it's True and the dataset is already downloaded, it's extracted.
- If it's True and the dataset is already downloaded and extracted, error occurs because the extracted folders exist. *Deleting the extracted folders doesn't get error.
- It should be False if the dataset is already downloaded and extracted not to get error.
- From here:
- for split="train-standard" and small=False, you can manually download and extract the dataset filelist_places365-standard.tar and train_large_places365standard.tar to data/ and data/data_large_standard/ respectively.
- for split="train-standard" and small=True, you can manually download and extract the dataset filelist_places365-standard.tar and train_256_places365standard.tar to data/ and data/data_256_standard/ respectively.
- for split="train-challenge" and small=False, you can manually download and extract the dataset filelist_places365-challenge.tar and train_large_places365challenge.tar to data/ and data/data_large/ respectively.
- for split="train-challenge" and small=True, you can manually download and extract the dataset filelist_places365-challenge.tar and train_256_places365challenge.tar to data/ and data/data_256_challenge/ respectively.
- for split="val" and small=False, you can manually download and extract the dataset filelist_places365-standard.tar and val_large.tar to data/ and data/val_large/ respectively.
- for split="val" and small=True, you can manually download and extract the dataset filelist_places365-standard.tar and val_large.tar to data/ and data/val_256/ respectively.
- The 5th argument is transform(Optional-Default:None-Type:callable).
- The 6th argument is target_transform(Optional-Default:None-Type:callable).
- The 7th argument is loader(Optional-Default:torchvision.datasets.folder.default_loader-Type:callable).
- About the label from the classes for the "train-standard" image indices, airfield(0) is 0~4999, airplane_cabin(1) is 5000~9999, airport_terminal(2) is 10000~14999, alcove(3) is 15000~19999, alley(4) is 20000~24999, amphitheater(5) is 25000~29999, amusement_arcade(6) is 30000~34999, amusement_park(7) is 35000~39999, apartment_building/outdoor(8) is 40000~44999, aquarium(9) is 45000~49999, etc.
- About the label from the classes for the "train-challenge" image indices, airfield(0) is 0~38566, airplane_cabin(1) is 38567~47890, airport_terminal(2) is 47891~74901, alcove(3) is 74902~98482, alley(4) is 98483~137662, amphitheater(5) is 137663~150034, amusement_arcade(6) is 150035~161051, amusement_park(7) is 161052~201051, apartment_building/outdoor(8) is 201052~227872, aquarium(9) is 227873~267872, etc.
from torchvision.datasets import Places365 from torchvision.datasets.folder import default_loader trainstd_large_data = Places365( root="data" ) trainstd_large_data = Places365( root="data", split="train-standard", small=False, download=False, transform=None, target_transform=None, loader=default_loader ) trainstd_small_data = Places365( root="data", split="train-standard", small=True ) trainchal_large_data = Places365( root="data", split="train-challenge", small=False ) trainchal_small_data = Places365( root="data", split="train-challenge", small=True ) val_large_data = Places365( root="data", split="val", small=False ) val_small_data = Places365( root="data", split="val", small=True ) len(trainstd_large_data), len(trainstd_small_data) # (1803460, 1803460) len(trainchal_large_data), len(trainchal_small_data) # (8026628, 8026628) len(val_large_data), len(val_small_data) # (36500, 36500) trainstd_large_data # Dataset Places365 # Number of datapoints: 1803460 # Root location: data # Split: train-standard # Small: False trainstd_large_data.root # 'data' trainstd_large_data.split # 'train-standard' trainstd_large_data.small # False trainstd_large_data.download_devkit trainstd_large_data.download_images # <bound method Places365.download_devkit of Dataset Places365 # Number of datapoints: 1803460 # Root location: data # Split: train-standard # Small: False> print(trainstd_large_data.transform) # None print(trainstd_large_data.target_transform) # None trainstd_large_data.loader # <function torchvision.datasets.folder.default_loader(path: str) -> Any> len(trainstd_large_data.classes), trainstd_large_data.classes # (365, # ['/a/airfield', '/a/airplane_cabin', '/a/airport_terminal', # '/a/alcove', '/a/alley', '/a/amphitheater', '/a/amusement_arcade', # '/a/amusement_park', '/a/apartment_building/outdoor', # '/a/aquarium', '/a/aqueduct', '/a/arcade', '/a/arch', # '/a/archaelogical_excavation', ..., '/y/youth_hostel', '/z/zen_garden']) trainstd_large_data[0] # (<PIL.Image.Image image mode=RGB size=683x512>, 0) trainstd_large_data[1] # (<PIL.Image.Image image mode=RGB size=768x512>, 0) trainstd_large_data[2] # (<PIL.Image.Image image mode=RGB size=718x512>, 0) trainstd_large_data[5000] # (<PIL.Image.Image image mode=RGB size=512x683 at 0x1E7834F4770>, 1) trainstd_large_data[10000] # (<PIL.Image.Image image mode=RGB size=683x512 at 0x1E7834A8110>, 2) trainstd_small_data[0] # (<PIL.Image.Image image mode=RGB size=256x256>, 0) trainstd_small_data[1] # (<PIL.Image.Image image mode=RGB size=256x256>, 0) trainstd_small_data[2] # (<PIL.Image.Image image mode=RGB size=256x256>, 0) trainstd_small_data[5000] # (<PIL.Image.Image image mode=RGB size=256x256>, 1) trainstd_small_data[10000] # (<PIL.Image.Image image mode=RGB size=256x256>, 2) trainchal_large_data[0] # (<PIL.Image.Image image mode=RGB size=683x512 at 0x156E22BB680>, 0) trainchal_large_data[1] # (<PIL.Image.Image image mode=RGB size=768x512 at 0x156DF8213D0>, 0) trainchal_large_data[2] # (<PIL.Image.Image image mode=RGB size=718x512 at 0x156DF8213D0>, 0) trainchal_large_data[38567] # (<PIL.Image.Image image mode=RGB size=512x683 at 0x156DF8213D0>, 1) trainchal_large_data[47891] # (<PIL.Image.Image image mode=RGB size=683x512 at 0x156DF8213D0>, 2) trainchal_small_data[0] # (<PIL.Image.Image image mode=RGB size=256x256 at 0x2955B625CA0>, 0) trainchal_small_data[1] # (<PIL.Image.Image image mode=RGB size=256x256 at 0x2950D2A8350>, 0) trainchal_small_data[2] # (<PIL.Image.Image image mode=RGB size=256x256 at 0x2950D2A82C0>, 0) trainchal_small_data[38567] # (<PIL.Image.Image image mode=RGB size=256x256 at 0x2955B3BF6B0>, 1) trainchal_small_data[47891] # (<PIL.Image.Image image mode=RGB size=256x256 at 0x2955B3DD4F0>, 2) val_large_data[0] # (<PIL.Image.Image image mode=RGB size=512x772 at 0x295408DA750>, 165) val_large_data[1] # (<PIL.Image.Image image mode=RGB size=600x493 at 0x29561D468D0>, 358) val_large_data[2] # (<PIL.Image.Image image mode=RGB size=763x512 at 0x2955E09DD60>, 93) val_large_data[3] # (<PIL.Image.Image image mode=RGB size=827x512 at 0x29540938A70>, 164) val_large_data[4] # (<PIL.Image.Image image mode=RGB size=772x512 at 0x29562600650>, 289) val_small_data[0] # (<PIL.Image.Image image mode=RGB size=256x256 at 0x2950D34C500>, 165) val_small_data[1] # (<PIL.Image.Image image mode=RGB size=256x256 at 0x29540892870>, 358) val_small_data[2] # (<PIL.Image.Image image mode=RGB size=256x256 at 0x2954085DBB0>, 93) val_small_data[3] # (<PIL.Image.Image image mode=RGB size=256x256 at 0x29561E348C0>, 164) val_small_data[4] # (<PIL.Image.Image image mode=RGB size=256x256 at 0x29560A415B0>, 289) import matplotlib.pyplot as plt def show_images(data, ims, main_title=None): plt.figure(figsize=(12, 6)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, j in enumerate(iterable=ims, start=1): plt.subplot(2, 5, i) im, lab = data[j] plt.imshow(X=im) plt.title(label=lab) plt.tight_layout(h_pad=3.0) plt.show() trainstd_ims = (0, 1, 2, 5000, 10000, 15000, 20000, 25000, 30000, 35000) trainchal_ims = (0, 1, 2, 38567, 47891, 74902, 98483, 137663, 150035, 161052) val_ims = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) show_images(data=trainstd_large_data, ims=trainstd_ims, main_title="trainstd_large_data") show_images(data=trainstd_small_data, ims=trainstd_ims, main_title="trainstd_small_data") show_images(data=trainchal_large_data, ims=trainchal_ims, main_title="trainchal_large_data") show_images(data=trainchal_small_data, ims=trainchal_ims, main_title="trainchal_small_data") show_images(data=val_large_data, ims=val_ims, main_title="val_large_data") show_images(data=val_small_data, ims=val_ims, main_title="val_small_data")
The above is the detailed content of Places in PyTorch. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code
