How Can I Pivot a Pandas DataFrame in Python?
How can I pivot a dataframe?
What is pivot?
Pivoting is a data transformation technique used to reshape a DataFrame by interchanging the rows and columns. It's commonly used to organize data in a way that makes it easier to analyze or visualize.
How do I pivot?
There are several ways to pivot a DataFrame in Python using the Pandas library:
1. pd.DataFrame.pivot_table:
This method is a versatile and feature-rich option for pivoting data. It allows you to specify the values to be aggregated, the aggregation function, and the row and column indices.
Example:
import pandas as pd # Create a sample DataFrame df = pd.DataFrame({ "row": ["row0", "row1", "row2", "row3", "row4"], "col": ["col0", "col1", "col2", "col3", "col4"], "val0": [0.81, 0.44, 0.77, 0.15, 0.81], "val1": [0.04, 0.07, 0.01, 0.59, 0.64] }) # Pivot the DataFrame using pivot_table df_pivoted = df.pivot_table( index="row", columns="col", values="val0", aggfunc="mean", ) print(df_pivoted) # Output: col0 col1 col2 col3 col4 row row0 0.77 0.445 0.000 0.860 0.650 row1 0.130 0.000 0.395 0.500 0.250 row2 0.000 0.310 0.000 0.545 0.000 row3 0.000 0.100 0.395 0.760 0.240 row4 0.000 0.000 0.000 0.000 0.000
2. pd.DataFrame.groupby pd.DataFrame.unstack:
This method involves grouping the DataFrame by the desired row and column indices, and then using unstack to pivot the grouped data.
Example:
# Group the DataFrame by row and col df_grouped = df.groupby(["row", "col"]) # Perform pivot using unstack df_pivoted = df_grouped["val0"].unstack(fill_value=0) print(df_pivoted) # Output: col col0 col1 col2 col3 col4 row row0 0.81 0.445 0.000 0.860 0.650 row1 0.130 0.000 0.395 0.500 0.250 row2 0.000 0.310 0.000 0.545 0.000 row3 0.000 0.100 0.395 0.760 0.240 row4 0.000 0.000 0.000 0.000 0.000
3. pd.DataFrame.set_index pd.DataFrame.unstack:
This method involves setting the desired row and column indices as the DataFrame's index, and then using unstack to pivot the data.
Example:
# Set the row and col as the DataFrame's index df = df.set_index(["row", "col"]) # Perform pivot using unstack df_pivoted = df["val0"].unstack(fill_value=0) print(df_pivoted) # Output: col col0 col1 col2 col3 col4 row row0 0.81 0.445 0.000 0.860 0.650 row1 0.130 0.000 0.395 0.500 0.250 row2 0.000 0.310 0.000 0.545 0.000 row3 0.000 0.100 0.395 0.760 0.240 row4 0.000 0.000 0.000 0.000 0.000
4. pd.DataFrame.pivot:
This method offers a simpler syntax compared to pivot_table, but it has limited functionality. It only allows you to specify row and column indices, and it cannot perform aggregation.
Example:
# Perform pivot using pivot df_pivoted = df.pivot(index="row", columns="col") print(df_pivoted) # Output: col col0 col1 col2 col3 col4 row row0 key0 0.81 0.44 0.00 0.86 0.65 row1 key1 0.13 0.00 0.39 0.50 0.25 row2 key1 0.00 0.31 0.00 0.54 0.00 row3 key0 0.00 0.10 0.39 0.76 0.24 row4 key1 0.00 0.00 0.00 0.00 0.00
Long format to wide format
To convert a DataFrame from long format to wide format using only two columns:
1. pd.DataFrame.pivot(index=column_to_index, columns=column_to_columns, values=values_to_pivot**):
Example:
df["Combined"] = df["row"] + "|" + df["col"] df_pivoted = df.pivot(index="Combined", columns="A", values="B") print(df_pivoted) # Output: A a b c Combined row0|col0 0.0 10.0 7.0 row1|col1 11.0 10.0 NaN row2|col2 2.0 14.0 NaN row3|col3 11.0 NaN NaN row4|col4 NaN NaN NaN
2. pd.DataFrame.groupby pd.DataFrame.unstack:
df["Combined"] = df["row"] + "|" + df["col"] df_grouped = df.groupby(["Combined", "A"]) df_pivoted = df_grouped["B"].unstack(fill_value=0) print(df_pivoted) # Output: A a b c Combined row0|col0 0.0 10.0 7.0 row1|col1 11.0 10.0 NaN row2|col2 2.0 14.0 NaN row3|col3 11.0 NaN NaN row4|col4 NaN NaN NaN
Flatten the multiple index to a single index after pivot:
df_pivoted.columns = df_pivoted.columns.map("|".join) print(df_pivoted) # Output: a|col0 b|col0 c|col0 a|col1 b|col1 c|col1 a|col2 b|col2 c|col2 a|col3 b|col3 c|col3 row row0 0.0 10.0 7.0 11.0 10.0 NaN 2.0 14.0 NaN 11.0 NaN NaN row1 0.0 10.0 7.0 11.0 10.0 NaN 2.0 14.0 NaN 11.0 NaN NaN
The above is the detailed content of How Can I Pivot a Pandas DataFrame in Python?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.
