Home Backend Development Python Tutorial ommon Refactors in Python for Beginners

ommon Refactors in Python for Beginners

Dec 17, 2024 pm 05:42 PM

ommon Refactors in Python for Beginners

Refactoring helps make your code cleaner and more efficient. Here are five common refactors for beginners in Python.

I. Simplifying Boolean Expressions

A common pattern is using an if-else block just to return True or False. For example:

1

2

3

4

if condition:

    return True

else:

    return False

Copy after login
Copy after login

Refactor it to:

1

return condition

Copy after login

The condition itself is already a Boolean expression, so the if-else block is unnecessary. By directly returning the condition, the code becomes shorter and more readable. This is a simple but effective way to improve clarity without changing the functionality.

II. List Comprehensions Instead of for / if

Beginners often use for loops with if statements to build lists. For example:

1

2

3

4

result = []

for item in items:

    if condition(item):

        result.append(item)

Copy after login

Refactor it to a list comprehension:

1

result = [item for item in items if condition(item)]

Copy after login

List comprehensions provide a more concise way to construct lists. They are also typically faster than equivalent for loops because they are optimized internally by Python. This approach is easier to read as well, especially for simple list creation tasks.

III. Avoid Repeating Calculations

If you call the same function multiple times in a loop, store the result in a variable. For example:

1

2

3

4

for item in items:

    if len(item) > 5:

        result.append(item)

...

Copy after login

Refactor it to:

1

2

3

4

5

for item in items:

    len = len(item)

    if len > 5:

        result.append(item)

...

Copy after login

Imagine if this condition held in multiple elif or nested if statements. Here, the len(item) is called twice for each iteration, which can be inefficient, especially for large lists. Storing the result of len(item) in a variable (len) eliminates the repeated calculation, improving performance and making the code cleaner. This is a basic example.

IV. Replace Loops with map and filter

Instead of writing explicit loops, use Python’s built-in functions like map() and filter(), which can be more efficient and concise. For example, to double each item in a list:

1

2

3

result = []

for item in items:

    result.append(item * 2)

Copy after login

Refactor it to:

1

result = list(map(lambda x: x * 2, items))

Copy after login

Or to filter items greater than 5:

1

2

3

4

result = []

for item in items:

    if item > 5:

        result.append(item)

Copy after login

Refactor it to:

1

result = list(filter(lambda x: x > 5, items))

Copy after login

Both map() and filter() take functions as arguments, so we can use lambda to define small anonymous functions. The lambda function is a concise way to define simple operations. For example, lambda x: x * 2 creates a function that multiplies x by 2. The benefit of map() and filter() is that they are often more efficient than using a for loop and are typically more readable. One could also use list comprehensions (see above).

V Combine Multiple if Statements

When checking multiple conditions, combining them with logical operators (and, or) can simplify your code. For example:

1

2

3

if a > 0:

    if b > 0:

        result = a + b

Copy after login

Refactor it to:

1

2

3

4

if condition:

    return True

else:

    return False

Copy after login
Copy after login

This reduces unnecessary nesting and makes the code easier to read and maintain. Combining conditions into one if statement makes the flow of logic clearer and eliminates redundancy.

Conclusion

Refactoring is about making your code shorter, clearer, and more efficient without changing what it does. By simplifying Boolean expressions, using list comprehensions, avoiding repeated calculations, leveraging built-in functions like map() and filter(), and merging conditions, you can make your code DRY. Using lambda allows you to define small functions in a single line, keeping the code neat and fast. These practices not only improve performance but also enhance readability, which is crucial for maintaining code in the long run.

Further reading:

https://www.w3schools.com/python/python_lambda.asp

https://www.w3schools.com/python/ref_func_filter.asp

https://www.w3schools.com/python/ref_func_map.asp

The above is the detailed content of ommon Refactors in Python for Beginners. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1268
29
C# Tutorial
1248
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python vs. C  : Exploring Performance and Efficiency Python vs. C : Exploring Performance and Efficiency Apr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Learning Python: Is 2 Hours of Daily Study Sufficient? Learning Python: Is 2 Hours of Daily Study Sufficient? Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

See all articles