


Extracting Text from HTML Content in Python: A Simple Solution with `HTMLParser`
Introduction
When working with HTML data, you often need to clean up the tags and retain only the plain text. Whether it's for data analysis, automation, or simply making content readable, this task is common for developers.
In this article, I'll show you how to create a simple Python class to extract plain text from HTML using HTMLParser, a built-in Python module.
Why Use HTMLParser?
HTMLParser is a lightweight and built-in Python module that allows you to parse and manipulate HTML documents. Unlike external libraries like BeautifulSoup, it's lightweight and ideal for simple tasks like HTML tag cleaning.
The Solution: A Simple Python Class
Step 1: Create the HTMLTextExtractor Class
from html.parser import HTMLParser class HTMLTextExtractor(HTMLParser): """Class for extracting plain text from HTML content.""" def __init__(self): super().__init__() self.text = [] def handle_data(self, data): self.text.append(data.strip()) def get_text(self): return ''.join(self.text)
This class does three main things:
- Initializes a list self.text to store extracted text.
- Uses the handle_data method to capture all plain text found between HTML tags.
- Combines all the text fragments with the get_text method.
Step 2: Use the Class to Extract Text
Here's how you can use the class to clean up HTML:
raw_description = """ <div> <h1>Welcome to our website!</h1> <p>We offer <strong>exceptional services</strong> for our customers.</p> <p>Contact us at: <a href="mailto:contact@example.com">contact@example.com</a></p> </div> """ extractor = HTMLTextExtractor() extractor.feed(raw_description) description = extractor.get_text() print(description)
Output:
Welcome to our website! We offer exceptional services for our customers.Contact us at: contact@example.com
Adding Support for Attributes
If you want to capture additional information, such as links in tags, here's an enhanced version of the class:
class HTMLTextExtractor(HTMLParser): """Class for extracting plain text and links from HTML content.""" def __init__(self): super().__init__() self.text = [] def handle_data(self, data): self.text.append(data.strip()) def handle_starttag(self, tag, attrs): if tag == 'a': for attr, value in attrs: if attr == 'href': self.text.append(f" (link: {value})") def get_text(self): return ''.join(self.text)
Enhanced Output:
Welcome to our website!We offer exceptional services for our customers.Contact us at: contact@example.com (link: mailto:contact@example.com)
## Use Cases - **SEO**: Clean HTML tags to analyze the plain text content of a webpage. - **Emails**: Transform HTML emails into plain text for basic email clients. - **Scraping**: Extract important data from web pages for analysis or storage. - **Automated Reports**: Simplify API responses containing HTML into readable text.
Advantages of This Approach
- Lightweight: No need for external libraries; it's built on Python's native HTMLParser.
- Ease of Use: Encapsulates the logic in a simple and reusable class.
- Customizable: Easily extend the functionality to capture specific information like attributes or additional tag data.
## Limitations and Alternatives While `HTMLParser` is simple and efficient, it has some limitations: - **Complex HTML**: It may struggle with very complex or poorly formatted HTML documents. - **Limited Features**: It doesn't provide advanced parsing features like CSS selectors or DOM tree manipulation. ### Alternatives If you need more robust features, consider using these libraries: - **BeautifulSoup**: Excellent for complex HTML parsing and manipulation. - **lxml**: Known for its speed and support for both XML and HTML parsing.
Conclusion
With this solution, you can easily extract plain text from HTML in just a few lines of code. Whether you're working on a personal project or a professional task, this approach is perfect for lightweight HTML cleaning and analysis.
If your use case involves more complex or malformed HTML, consider using libraries like BeautifulSoup or lxml for enhanced functionality.
Feel free to try this code in your projects and share your experiences. Happy coding! ?
The above is the detailed content of Extracting Text from HTML Content in Python: A Simple Solution with `HTMLParser`. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.
