


How Can NumPy's Vectorized Functions Efficiently Justify Arrays?
Justifying NumPy Arrays with Vectorized Functions
NumPy provides efficient ways to justify arrays using vectorized functions, offering improved performance and code simplicity compared to traditional Python loops.
Problem Statement
Given a NumPy array, the task is to shift its non-zero elements to the left, right, up, or down while maintaining its shape.
Numpy Solution
The following NumPy implementation performs efficient justification:
import numpy as np def justify(a, invalid_val=0, axis=1, side='left'): if invalid_val is np.nan: mask = ~np.isnan(a) else: mask = a!=invalid_val justified_mask = np.sort(mask,axis=axis) if (side=='up') | (side=='left'): justified_mask = np.flip(justified_mask,axis=axis) out = np.full(a.shape, invalid_val) if axis==1: out[justified_mask] = a[mask] else: out.T[justified_mask.T] = a.T[mask.T] return out
This function justifies a 2D array along the specified axis and side (left, right, up, down). It works by identifying non-zero elements using mask, sorting them using sort, flipping the mask if justifying upwards or leftwards, and finally overwriting the original array with the justified values.
Example Usage
Here's a usage example that covers non-zero elements to the left:
a = np.array([[1,0,2,0], [3,0,4,0], [5,0,6,0], [0,7,0,8]]) # Cover left covered_left = justify(a, axis=1, side='left') print("Original Array:") print(a) print("\nCovered Left:") print(covered_left)
Output:
Original Array: [[1 0 2 0] [3 0 4 0] [5 0 6 0] [0 7 0 8]] Covered Left: [[1 2 0 0] [3 4 0 0] [5 6 0 0] [7 8 0 0]]
Justifying for a Generic N-Dimensional Array
For justifying an N-dimensional array, the following function can be used:
def justify_nd(a, invalid_val, axis, side): pushax = lambda a: np.moveaxis(a, axis, -1) if invalid_val is np.nan: mask = ~np.isnan(a) else: mask = a!=invalid_val justified_mask = np.sort(mask,axis=axis) if side=='front': justified_mask = np.flip(justified_mask,axis=axis) out = np.full(a.shape, invalid_val) if (axis==-1) or (axis==a.ndim-1): out[justified_mask] = a[mask] else: pushax(out)[pushax(justified_mask)] = pushax(a)[pushax(mask)] return out
This function supports more complex scenarios by justifying an N-dimensional array along an arbitrary axis and to either the 'front' or 'end' of the array.
The above is the detailed content of How Can NumPy's Vectorized Functions Efficiently Justify Arrays?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

Fastapi ...

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

Using python in Linux terminal...

Understanding the anti-crawling strategy of Investing.com Many people often try to crawl news data from Investing.com (https://cn.investing.com/news/latest-news)...
