Jinbase – Multi-model transactional embedded database
Hi Dev !
I'm Alex, a tech enthusiast. I'm excited to show you Jinbase, my multi-model transactional embedded database.
Almost a year ago, I introduced Paradict, my take on multi-format streaming serialization. Given its readability, the Paradict text format appears de facto as an interesting data format for config files. But using Paradict to manage config files would end up cluttering its programming interface and making it confusing for users who still have choices of alternative libraries (TOML, INI File, etc.) dedicated to config files. So I used Paradict as a dependency for KvF (Key-value file format), a new project of mine that focuses on config files with sections.
With its compact binary format, I thought Paradict would be an efficient dependency for a new project that would rely on I/O functions (such as Open, Read, Write, Seek, Tell and Close) to implement a minimalistic yet reliable persistence solution. But that was before I learned that "files are hard". SQLite with its transactions, BLOB data type and incremental I/O for BLOBs seemed like the right giant to stand on for my new project.
Jinbase started small as a key-value store and ended up as a multi-model embedded database that pushes the boundaries of what we usually do with SQLite. The first transition to the second data model (the depot) happened when I realized that the key-value store was not well suited for cases where a unique identifier (UID) is supposed to be automatically generated for each new record, saving the user the burden of providing an identifier that could accidentally be subject to a collision and thus overwrite an existing record. After that, I implemented a search capability that accepts UID ranges for the depot store, timespans (records are automatically timestamped) for both the depot and key-value stores and GLOB patterns and number ranges for string and integer keys in the key-value store.
The queue and stack data models emerged as solutions for use cases where records must be consumed in a specific order. A typical record would be retrieved and deleted from the database in a single transaction unit.
Since SQLite is used as the storage engine, Jinbase supports the relational model de facto. For convenience, all tables related to Jinbase internals are prefixed with jinbase_, making Jinbase a useful tool for opening legacy SQLite files to add new data models that will safely coexist with the ad hoc relational model.
All four main data models (key-value, depot, queue, stack) support Paradict-compatible data types, such as dictionaries, strings, binary data, integers, booleans, datetimes, etc. Under the hood, when the user initiates a write operation, Jinbase serializes (except for binary data), chunks, and stores the data iteratively. A record can be accessed not only in bulk, but also with two levels of partial access granularity: the byte-level and the field-level.
While SQLite's incremental I/O for BLOBs is designed to target an individual BLOB column in a row, Jinbase extends this so that for each record, incremental reads cover all chunks as if they were a single unified BLOB. For dictionary records only, Jinbase automatically creates and maintains a lightweight index consisting of pointers to root fields, which then allows extracting from an arbitrary record the contents of a field automatically deserialized before being returned.
The most obvious use cases for Jinbase are storing user preferences, persisting session data before exit, order-based processing of data streams, exposing data for other processes, upgrading legacy SQLite files with new data models and bespoke data persistence solutions.
Jinbase is written in Python, is available on PyPI and you can play with the examples on the README.
Let me know what you think of this project.
Project Link: https://github.com/pyrustic/jinbase
The above is the detailed content of Jinbase – Multi-model transactional embedded database. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code
