Home Backend Development Python Tutorial How to create a voice translation bot with witai

How to create a voice translation bot with witai

Dec 02, 2024 am 08:29 AM

Comment créer un bot de traduction vocale avec witai

In our globalized world, communication across linguistic boundaries is more essential than ever. In this article, we will explore how to implement this technology to make communication more inclusive and accessible to everyone.

The code is available here
on my github

First thing to do is install the dependencies

blinker==1.8.2
cachetools==5.5.0
certifi==2024.8.30
chardet==3.0.4
charset-normalizer==3.4.0
click==8.1.7
colorama==0.4.6
Flask==3.0.3
google-api-core==2.22.0
google-auth==2.36.0
google-cloud-texttospeech==2.21.0
googleapis-common-protos==1.65.0
googletrans==4.0.0rc1
grpcio==1.67.1
grpcio-status==1.67.1
gTTS==2.5.3
h11==0.9.0
h2==3.2.0
hpack==3.0.0
hstspreload==2024.11.1
httpcore==0.9.1
httpx==0.13.3
hyperframe==5.2.0
idna==2.10
itsdangerous==2.2.0
Jinja2==3.1.4
Levenshtein==0.26.1
MarkupSafe==3.0.2
playsound==1.2.2
prompt_toolkit==3.0.48
proto-plus==1.25.0
protobuf==5.28.3
pyasn1==0.6.1
pyasn1_modules==0.4.1
PyAudio==0.2.14
python-Levenshtein==0.26.1
RapidFuzz==3.10.1
requests==2.32.3
rfc3986==1.5.0
rsa==4.9
sniffio==1.3.1
SpeechRecognition==3.11.0
typing_extensions==4.12.2
urllib3==2.2.3
wcwidth==0.2.13
Werkzeug==3.1.2
wit==6.0.1
Copy after login

Audio to text conversion

from gtts import gTTS
import playsound
import os

def speak_translation(text, lang):
    tts = gTTS(text=text, lang=lang)
    filename = "translation.mp3"
    tts.save(filename)
    playsound.playsound(filename)
    os.remove(filename)
Copy after login

Google cloud text Speech

from google.cloud import texttospeech

def synthesize_speech(text, language_code="wo-WO", voice_name="wo-WO-Standard-A", output_file="output.mp3"):
    client = texttospeech.TextToSpeechClient()

    input_text = texttospeech.SynthesisInput(text=text)

    # Configurez la voix pour le Wolof
    voice = texttospeech.VoiceSelectionParams(
        language_code=language_code,
        name=voice_name,
        ssml_gender=texttospeech.SsmlVoiceGender.NEUTRAL,
    )

    # Paramètres audio
    audio_config = texttospeech.AudioConfig(
        audio_encoding=texttospeech.AudioEncoding.MP3
    )

    # Synthèse vocale
    response = client.synthesize_speech(
        input=input_text, voice=voice, audio_config=audio_config
    )

    # Sauvegarder le fichier audio
    with open(output_file, "wb") as out:
        out.write(response.audio_content)
        print(f"Audio content written to file {output_file}")

# Utilisez cette fonction avec votre texte
synthesize_speech("Bonjour, je teste la traduction en Wolof.", "wo-WO")
Copy after login

Translation

from googletrans import Translator

def translate_text(text, target_lang):
    try:
        translator = Translator()
        translation = translator.translate(text, dest=target_lang)
        print(f"Traduction : {translation.text}")
        return translation.text
    except Exception as e:
        print(f"Erreur lors de la traduction : {e}")
        return "Traduction non disponible"
Copy after login

Voice detection

import speech_recognition as sr

def record_audio():
    recognizer = sr.Recognizer()
    with sr.Microphone() as source:
        print("Parlez maintenant...")
        audio = recognizer.listen(source)
        try:
            text = recognizer.recognize_google(audio, language="fr-FR")
            print(f"Vous avez dit : {text}")
            return text
        except sr.UnknownValueError:
            print("Désolé, je n'ai pas compris.")
        except sr.RequestError as e:
            print(f"Erreur de service : {e}")
Copy after login

Witai params:
You must go to the Meta API (Facebook) to create your token

import requests

WIT_AI_TOKEN = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'

def send_to_wit(text):
    headers = {'Authorization': f'Bearer {WIT_AI_TOKEN}'}
    response = requests.get(f'https://api.wit.ai/message?v=20230414&q={text}', headers=headers)
    return response.json()
Copy after login

The main file

from flask import Flask, request, jsonify
from convertion_audio_to_text import speak_translation
from translation import translate_text
from voice_detection import record_audio
from witai_params import send_to_wit
import Levenshtein

app = Flask(__name__)

# Langues disponibles
AVAILABLE_LANGUAGES = {
    "sw": "Swahili",
    "wo": "Wolof",
    "fon": "Fon",
    "en": "Anglais",
    "fr": "Français"
}

def calculate_score(reference_text, user_text):
    similarity = Levenshtein.ratio(reference_text.lower(), user_text.lower()) * 100
    return round(similarity, 2)

@app.route('/available_languages', methods=['GET'])
def available_languages():
    """Retourne les langues disponibles pour la traduction."""
    return jsonify(AVAILABLE_LANGUAGES)


@app.route('/process_audio', methods=['POST'])
def process_audio():
    """Traite l'audio, traduit le texte et évalue la prononciation."""
    try:
        # Étape 1 : Récupérer la langue cible depuis la requête
        target_lang = request.json.get('target_lang')

        if not target_lang:
            return jsonify({"error": "Paramètre 'target_lang' manquant"}), 400

        if target_lang not in AVAILABLE_LANGUAGES:
            return jsonify({
                "error": f"Langue cible '{target_lang}' non supportée.",
                "available_languages": AVAILABLE_LANGUAGES  # Retourner la liste des langues disponibles
            }), 400

        # Étape 2 : Traduire le texte initial
        text = record_audio()
        if not text:
            return jsonify({"error": "No audio detected or transcription failed"}), 400

        wit_response = send_to_wit(text)
        print("Wit.ai Response:", wit_response)

        translation = translate_text(text, target_lang)
        speak_translation(translation, lang=target_lang)

        # Étape 3 : Boucle de répétition pour évaluer la prononciation
        score = 0
        while score < 80:
            repeat_text = record_audio()
            if not repeat_text:
                return jsonify({"error": "No repeated audio detected"}), 400

            score = calculate_score(translation, repeat_text)
            if score >= 80:
                message = "Bravo! Félicitations, vous êtes un génie!"
                return jsonify({
                    "original_text": text,
                    "wit_response": wit_response,
                    "translated_text": translation,
                    "repeated_text": repeat_text,
                    "score": score,
                    "message": message
                }), 200
            elif score < 45:
                message = "Votre score est faible, améliorez-vous en vous entraînant."
            else:
                message = "Pas mal! Vous pouvez encore améliorer."

            return jsonify({
                "translated_text": translation,
                "repeated_text": repeat_text,
                "score": score,
                "message": message,
                "retry": True
            })

    except Exception as e:
        return jsonify({"error": str(e)}), 500


if __name__ == '__main__':
    app.run(debug=True)


"""
tu peux tester avec ce code dans le navigateur, tu decommente, puis tu le met la ou il faut
@app.route('/process_audio', methods=['GET', 'POST'])
def process_audio():
    if request.method == 'GET':
        return jsonify({"message": "Utilisez une requête POST pour traiter l'audio."})

    # Continue avec la logique POST
    try:
        text = record_audio()
        if not text:
            return jsonify({"error": "No audio detected or transcription failed"}), 400

        wit_response = send_to_wit(text)
        print("Wit.ai Response:", wit_response)

        target_lang = request.json.get('target_lang', 'sw')
        translation = translate_text(text, target_lang)

        speak_translation(translation, lang=target_lang)

        return jsonify({
            "original_text": text,
            "wit_response": wit_response,
            "translated_text": translation
        }), 200
    except Exception as e:
        return jsonify({"error": str(e)}), 500
"""
Copy after login

Designing a bot is becoming easier and easier today to solve complex problems in our daily lives. However, this does not exclude the importance of learning languages ​​on your own. The use of technologies like BotAI for instant voice translation should primarily serve to enrich our interactions in complex contexts. By combining these tools with personal language learning, we promote more effective communication while promoting individual linguistic wealth.

The code is available here
on my github

The above is the detailed content of How to create a voice translation bot with witai. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1658
14
PHP Tutorial
1257
29
C# Tutorial
1231
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

See all articles