


Unlocking Text from Embedded-Font PDFs: A pytesseract OCR Tutorial
Extracting text from a PDF is usually straightforward when it's in English and doesn't have embedded fonts. However, once those assumptions are removed, it becomes challenging to use basic python libraries like pdfminer or pdfplumber. Last month, I was tasked with extracting text from a Gujarati-language PDF and importing data fields such as name, address, city, etc., into JSON format.
If the font is embedded in the PDF itself, simple copy-pasting won't work, and using pdfplumber will return unreadable junk text. Therefore, I had to convert each PDF page to an image and then apply OCR using the pytesseract library to "scan" the page instead of just reading it. This tutorial will show you how to do just that.
Things you will need
- pdfplumber (Python library)
- pdf2image (Python library)
- pytesseract (Python library)
- tesseract-ocr
You can install the Python libraries using pip commands as shown below. For Tesseract-OCR, download and install the software from the official site. pytesseract is just a wrapper around the tesseract software.
pip install pdfplumber pip install pdf2image pip install pytesseract
Converting the PDF page to an image
The first step is to convert your PDF page to an image. This extract_text_from_pdf() function does exactly that-you pass the PDF path and the page_num (zero indexed) as parameters. Note that I'm converting the page to black and white first for clarity, this is optional.
# Extract text from a specific page of a PDF def extract_text_from_pdf(pdf_path, page_num): # Use pdfplumber to open the PDF pdf = pdfplumber.open(pdf_path) print(f"extracting page {page_num}..") page = pdf.pages[page_num] images = convert_from_path(pdf_path, first_page=page_num+1, last_page=page_num+1) image = images[0] # Convert to black and white bw_image = convert_to_bw(image) # Save the B&W image for debugging (optional) #bw_image.save("bw_page.png") # Perform OCR on the B&W image e_text = ocr_image(bw_image) open('out.txt', 'w', encoding='utf-8').write(e_text) #print("output written to file.") try: process_text(page_num, e_text) except Exception as e: print("Error occurred:", e) print("done..") # Convert image to black and white def convert_to_bw(image): # Convert to grayscale gray = image.convert('L') # Apply threshold to convert to pure black and white bw = gray.point(lambda x: 0 if x < 128 else 255, '1') return bw # Perform OCR using Tesseract on a given image def ocr_image(image_path): try: # Perform OCR custom_config = r'--oem 3 --psm 6 -l guj+eng' text = pytesseract.image_to_string(image_path, config=custom_config) # --psm 6 treats the image as a block of text return text except Exception as e: print(f"Error during OCR: {e}") return None
The ocr_image() function uses pytesseract to extract text from the image through OCR. The technical parameters like --oem and --psm control how the image is processed, and the -l guj eng parameter sets the languages to be read. Since this PDF contained occasional English text, I used guj eng.
Processing the text
Once you've imported the text using OCR, you can parse it in the format you want. This works similarly to other PDF libraries like pdfplumber or pypdf2.
nums = ['0', '૧', '૨', '૩', '૪', '૫', '૬', '૭', '૮', '૯'] def process_text(page_num, e_text): obj = None last_surname = None last_kramank = None print(f"processing page {page_num}..") for line in e_text.splitlines(): line = line.replace('|', '').replace('[', '').replace(']', '') parts = [word for word in line.split(' ') if word] if len(parts) == 0: continue new_rec = True for char in parts[0]: if char not in nums: new_rec = False break if len(parts) < 2: continue if new_rec and len(parts[0]) >= 2: # numbered line if len(parts) < 9: continue if obj: records.append(obj) obj = {} last_surname = parts[1] obj['kramank'] = parts[0] last_kramank = parts[0] obj['full_name'] = ' '.join(parts[1:4]) obj['surname'] = parts[1] obj['pdf_page_num'] = page_num + 1 obj['registered_by'] = parts[4] obj['village_vatan'] = parts[5] obj['village_mosal'] = parts[6] if parts[8] == 'વર્ષ': idx = 7 obj['dob'] = parts[idx] + ' વર્ષ' idx += 1 elif len(parts[7]) == 8 and parts[7][2] == '-': idx = 7 obj['dob'] = parts[idx] else: print("warning: no date") idx = 6 obj['marital_status'] = parts[idx+1] obj['extra_fields'] = '::'.join(parts[idx+2:-2]) obj['blood_group'] = parts[-1] elif parts[0] == last_surname: # new member in existing family if obj: records.append(obj) obj = {} obj['kramank'] = last_kramank obj['surname'] = last_surname obj['full_name'] = ' '.join(parts[0:3]) obj['pdf_page_num'] = page_num + 1 obj['registered_by'] = parts[3] obj['village_vatan'] = parts[4] obj['village_mosal'] = parts[5] if len(parts) <= 6: continue if parts[7] == 'વર્ષ': # date exists idx = 6 obj['dob'] = parts[idx] + ' વર્ષ' idx += 1 elif len(parts[6]) == 8 and parts[6][2] == '-': idx = 6 obj['dob'] = parts[idx] else: print("warning: no date") idx = 5 obj['marital_status'] = parts[idx+1] obj['extra_fields'] = '::'.join(parts[idx+2:-2]) obj['blood_group'] = parts[-1] elif obj: # continuation lines if ("(" in line and ")" in line) or "મો.ઃ" in line: obj['extra_fields'] += ' ' + '::'.join(parts[0:]) if obj: records.append(obj) jstr = json.dumps(records, indent=4) open("guj.json", 'w', encoding='utf-8').write(jstr) print(f"written page {page_num} to json..")
Every PDF has its own nuances that must be accounted for. In this case, a new serial number (like 0૧ or 0૨) in the first field signaled a new group when the subsequent field (surname) changed.
pytesseract is a testament to the evolution and advancement in IT technology. About a decade ago, reading or parsing a PDF image using OCR in a non-English language on a modestly configured PC or laptop would have been nearly impossible. This is truly progress! Happy coding, and let me know how it goes in the comments below.
References
- Tesseract installation in windows
- Use pytesseract OCR to recognize text from an image
- How to configure pytesseract to support text detection for non English language in windows 10?
The above is the detailed content of Unlocking Text from Embedded-Font PDFs: A pytesseract OCR Tutorial. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code
