Home Backend Development Python Tutorial Building a Simple Chatbot with LlamaChat with Excel]

Building a Simple Chatbot with LlamaChat with Excel]

Nov 29, 2024 pm 08:31 PM

In this post, I’ll explain how I built a chatbot using the Llama2 model to query Excel data intelligently.

Building a Simple Chatbot with LlamaChat with Excel]

What We’re Building

  1. Loads an Excel file.
  2. Splits the data into manageable chunks.
  3. Stores the data in a vector database for fast retrieval.
  4. Use a local Llama2 model to answer questions based on the content of the Excel file.

Prerequisites:

Python (≥ 3.8)
Libraries: langchain, pandas, unstructured, Chroma

Step 1: Install Dependencies

%pip install -q unstructured langchain
%pip install -q "unstructured[all-docs]"
Copy after login

Step 2: Load the Excel File

import pandas as pd

excel_path = "Book2.xlsx"
if excel_path:
    df = pd.read_excel(excel_path)
    data = df.to_string(index=False)
else:
    print("Upload an Excel file")

Copy after login

Step 3: Chunk the Data and Store in a Vector Database

Large text data is split into smaller, overlapping chunks for effective embedding and querying. These chunks are stored in a Chroma vector database.

from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.embeddings import OllamaEmbeddings
from langchain_community.vectorstores import Chroma

text_splitter = RecursiveCharacterTextSplitter(chunk_size=7500, chunk_overlap=100)
chunks = text_splitter.split_text(data)

embedding_model = OllamaEmbeddings(model="nomic-embed-text", show_progress=False)
vector_db = Chroma.from_texts(
    texts=chunks, 
    embedding=embedding_model,
    collection_name="local-rag"
)

Copy after login

Step 4: Initialize the Llama2 Model

We use ChatOllama to load the Llama2 model locally.

from langchain_community.chat_models import ChatOllama

local_model = "llama2"
llm = ChatOllama(model=local_model)

Copy after login

Step 5: Create a Query Prompt

The chatbot will respond based on specific column names from the Excel file. We create a prompt template to guide the model

from langchain.prompts import PromptTemplate

QUERY_PROMPT = PromptTemplate(
    input_variables=["question"],
    template="""You are an AI assistant. Answer the user's questions based on the column names: 
    Id, order_id, name, sales, refund, and status. Original question: {question}"""
)
Copy after login

Step 6: Set Up the Retriever

We configure a retriever to fetch relevant chunks from the vector database, which will be used by the Llama2 model to answer questions.

from langchain.retrievers.multi_query import MultiQueryRetriever

retriever = MultiQueryRetriever.from_llm(
    vector_db.as_retriever(), 
    llm,
    prompt=QUERY_PROMPT
)

Copy after login

Step 7: Build the Response Chain

The response chain integrates:

  1. A retriever to fetch context.
  2. A prompt to format the question and context.
  3. The Llama2 model to generate answers.
  4. An output parser to format the response.
from langchain.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser

template = """Answer the question based ONLY on the following context:
{context}
Question: {question}
"""

prompt = ChatPromptTemplate.from_template(template)

chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)

Copy after login

Step 8: Ask a Question

Now we’re ready to ask a question! Here’s how we invoke the chain to get a response:

raw_result = chain.invoke("How many rows are there?")
final_result = f"{raw_result}\n\nIf you have more questions, feel free to ask!"
print(final_result)

Copy after login

Sample Output

When I ran the above code on a sample Excel file, here’s what I got:

Based on the provided context, there are 10 rows in the table.
If you have more questions, feel free to ask!

Copy after login

Conclusion:

This approach leverages the power of embeddings and the Llama2 model to create a smart, interactive chatbot for Excel data. With some tweaks, you can extend this to work with other types of documents or integrate it into a full-fledged app!

Check working example with UI on my LinkedIn:

Introducing BChat Excel: A Conversational AI-Powered Tool for Excel File Interactions

The above is the detailed content of Building a Simple Chatbot with LlamaChat with Excel]. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: The Power of Versatile Programming Python: The Power of Versatile Programming Apr 17, 2025 am 12:09 AM

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

See all articles