Home Backend Development Python Tutorial Master Python Coroutines: Create Custom Async Tools for Powerful Concurrent Apps

Master Python Coroutines: Create Custom Async Tools for Powerful Concurrent Apps

Nov 29, 2024 pm 12:18 PM

Master Python Coroutines: Create Custom Async Tools for Powerful Concurrent Apps

Coroutines in Python are a powerful tool for writing asynchronous code. They've revolutionized how we handle concurrent operations, making it easier to build scalable and efficient applications. I've spent a lot of time working with coroutines, and I'm excited to share some insights on creating custom asynchronous primitives.

Let's start with the basics. Coroutines are special functions that can be paused and resumed, allowing for cooperative multitasking. They're the foundation of Python's async/await syntax. When you define a coroutine, you're essentially creating a function that can yield control back to the event loop, allowing other tasks to run.

To create a custom awaitable object, you need to implement the await method. This method should return an iterator. Here's a simple example:

class CustomAwaitable:
    def __init__(self, value):
        self.value = value

    def __await__(self):
        yield
        return self.value

async def use_custom_awaitable():
    result = await CustomAwaitable(42)
    print(result)  # Output: 42
Copy after login
Copy after login

This CustomAwaitable class can be used with the await keyword, just like built-in awaitables. When awaited, it yields control once, then returns its value.

But what if we want to create more complex asynchronous primitives? Let's look at implementing a custom semaphore. Semaphores are used to control access to a shared resource by multiple coroutines:

import asyncio

class CustomSemaphore:
    def __init__(self, value=1):
        self._value = value
        self._waiters = []

    async def acquire(self):
        while self._value <= 0:
            fut = asyncio.get_running_loop().create_future()
            self._waiters.append(fut)
            await fut
        self._value -= 1

    def release(self):
        self._value += 1
        if self._waiters:
            asyncio.get_running_loop().call_soon_threadsafe(self._waiters.pop().set_result, None)

    async def __aenter__(self):
        await self.acquire()
        return self

    async def __aexit__(self, exc_type, exc, tb):
        self.release()

async def worker(semaphore, num):
    async with semaphore:
        print(f"Worker {num} acquired the semaphore")
        await asyncio.sleep(1)
    print(f"Worker {num} released the semaphore")

async def main():
    semaphore = CustomSemaphore(2)
    tasks = [asyncio.create_task(worker(semaphore, i)) for i in range(5)]
    await asyncio.gather(*tasks)

asyncio.run(main())
Copy after login
Copy after login

This CustomSemaphore class implements the acquire and release methods, as well as the async context manager protocol (aenter and aexit). It allows a maximum of two coroutines to acquire the semaphore simultaneously.

Now, let's talk about creating efficient event loops. While Python's asyncio provides a robust event loop implementation, there might be cases where you need a custom one. Here's a basic example of a custom event loop:

import time
from collections import deque

class CustomEventLoop:
    def __init__(self):
        self._ready = deque()
        self._stopping = False

    def call_soon(self, callback, *args):
        self._ready.append((callback, args))

    def run_forever(self):
        while not self._stopping:
            self._run_once()

    def _run_once(self):
        ntodo = len(self._ready)
        for _ in range(ntodo):
            callback, args = self._ready.popleft()
            callback(*args)

    def stop(self):
        self._stopping = True

    def run_until_complete(self, coro):
        def _done_callback(fut):
            self.stop()

        task = self.create_task(coro)
        task.add_done_callback(_done_callback)
        self.run_forever()
        return task.result()

    def create_task(self, coro):
        task = Task(coro, self)
        self.call_soon(task._step)
        return task

class Task:
    def __init__(self, coro, loop):
        self._coro = coro
        self._loop = loop
        self._done = False
        self._result = None
        self._callbacks = []

    def _step(self):
        try:
            if self._done:
                return
            result = self._coro.send(None)
            if isinstance(result, SleepHandle):
                result._task = self
                self._loop.call_soon(result._wake_up)
            else:
                self._loop.call_soon(self._step)
        except StopIteration as e:
            self.set_result(e.value)

    def set_result(self, result):
        self._result = result
        self._done = True
        for callback in self._callbacks:
            self._loop.call_soon(callback, self)

    def add_done_callback(self, callback):
        if self._done:
            self._loop.call_soon(callback, self)
        else:
            self._callbacks.append(callback)

    def result(self):
        if not self._done:
            raise RuntimeError('Task is not done')
        return self._result

class SleepHandle:
    def __init__(self, duration):
        self._duration = duration
        self._task = None
        self._start_time = time.time()

    def _wake_up(self):
        if time.time() - self._start_time >= self._duration:
            self._task._loop.call_soon(self._task._step)
        else:
            self._task._loop.call_soon(self._wake_up)

async def sleep(duration):
    return SleepHandle(duration)

async def example():
    print("Start")
    await sleep(1)
    print("After 1 second")
    await sleep(2)
    print("After 2 more seconds")
    return "Done"

loop = CustomEventLoop()
result = loop.run_until_complete(example())
print(result)
Copy after login

This custom event loop implements basic functionality like running tasks, handling coroutines, and even a simple sleep function. It's not as feature-rich as Python's built-in event loop, but it demonstrates the core concepts.

One of the challenges in writing asynchronous code is managing task priorities. While Python's asyncio doesn't provide built-in priority queues for tasks, we can implement our own:

import asyncio
import heapq

class PriorityEventLoop(asyncio.AbstractEventLoop):
    def __init__(self):
        self._ready = []
        self._stopping = False
        self._clock = 0

    def call_at(self, when, callback, *args, context=None):
        handle = asyncio.Handle(callback, args, self, context)
        heapq.heappush(self._ready, (when, handle))
        return handle

    def call_later(self, delay, callback, *args, context=None):
        return self.call_at(self._clock + delay, callback, *args, context=context)

    def call_soon(self, callback, *args, context=None):
        return self.call_at(self._clock, callback, *args, context=context)

    def time(self):
        return self._clock

    def stop(self):
        self._stopping = True

    def is_running(self):
        return not self._stopping

    def run_forever(self):
        while self._ready and not self._stopping:
            self._run_once()

    def _run_once(self):
        if not self._ready:
            return
        when, handle = heapq.heappop(self._ready)
        self._clock = when
        handle._run()

    def create_task(self, coro):
        return asyncio.Task(coro, loop=self)

    def run_until_complete(self, future):
        asyncio.futures._chain_future(future, self.create_future())
        self.run_forever()
        if not future.done():
            raise RuntimeError('Event loop stopped before Future completed.')
        return future.result()

    def create_future(self):
        return asyncio.Future(loop=self)

async def low_priority_task():
    print("Low priority task started")
    await asyncio.sleep(2)
    print("Low priority task finished")

async def high_priority_task():
    print("High priority task started")
    await asyncio.sleep(1)
    print("High priority task finished")

async def main():
    loop = asyncio.get_event_loop()
    loop.call_later(0.1, loop.create_task, low_priority_task())
    loop.call_later(0, loop.create_task, high_priority_task())
    await asyncio.sleep(3)

asyncio.run(main())
Copy after login

This PriorityEventLoop uses a heap queue to manage tasks based on their scheduled execution time. You can assign priorities by scheduling tasks with different delays.

Handling cancellation gracefully is another important aspect of working with coroutines. Here's an example of how to implement cancellable tasks:

import asyncio

async def cancellable_operation():
    try:
        print("Operation started")
        await asyncio.sleep(5)
        print("Operation completed")
    except asyncio.CancelledError:
        print("Operation was cancelled")
        # Perform any necessary cleanup
        raise  # Re-raise the CancelledError

async def main():
    task = asyncio.create_task(cancellable_operation())
    await asyncio.sleep(2)
    task.cancel()
    try:
        await task
    except asyncio.CancelledError:
        print("Main: task was cancelled")

asyncio.run(main())
Copy after login

In this example, the cancellable_operation catches the CancelledError, performs any necessary cleanup, and then re-raises the exception. This allows for graceful handling of cancellation while still propagating the cancellation status.

Let's explore implementing custom async iterators. These are useful for creating sequences that can be iterated over asynchronously:

class CustomAwaitable:
    def __init__(self, value):
        self.value = value

    def __await__(self):
        yield
        return self.value

async def use_custom_awaitable():
    result = await CustomAwaitable(42)
    print(result)  # Output: 42
Copy after login
Copy after login

This AsyncRange class implements the async iterator protocol, allowing it to be used in async for loops.

Finally, let's look at implementing custom async context managers. These are useful for managing resources that need to be acquired and released asynchronously:

import asyncio

class CustomSemaphore:
    def __init__(self, value=1):
        self._value = value
        self._waiters = []

    async def acquire(self):
        while self._value <= 0:
            fut = asyncio.get_running_loop().create_future()
            self._waiters.append(fut)
            await fut
        self._value -= 1

    def release(self):
        self._value += 1
        if self._waiters:
            asyncio.get_running_loop().call_soon_threadsafe(self._waiters.pop().set_result, None)

    async def __aenter__(self):
        await self.acquire()
        return self

    async def __aexit__(self, exc_type, exc, tb):
        self.release()

async def worker(semaphore, num):
    async with semaphore:
        print(f"Worker {num} acquired the semaphore")
        await asyncio.sleep(1)
    print(f"Worker {num} released the semaphore")

async def main():
    semaphore = CustomSemaphore(2)
    tasks = [asyncio.create_task(worker(semaphore, i)) for i in range(5)]
    await asyncio.gather(*tasks)

asyncio.run(main())
Copy after login
Copy after login

This AsyncResource class implements the aenter and aexit methods, allowing it to be used with the async with statement.

In conclusion, Python's coroutine system provides a powerful foundation for building custom asynchronous primitives. By understanding the underlying mechanisms and protocols, you can create tailored solutions for specific asynchronous challenges, optimize performance in complex concurrent scenarios, and extend Python's async capabilities. Remember, while these custom implementations are great for learning and specific use cases, Python's built-in asyncio library is highly optimized and should be your go-to for most scenarios. Happy coding!


Our Creations

Be sure to check out our creations:

Investor Central | Smart Living | Epochs & Echoes | Puzzling Mysteries | Hindutva | Elite Dev | JS Schools


We are on Medium

Tech Koala Insights | Epochs & Echoes World | Investor Central Medium | Puzzling Mysteries Medium | Science & Epochs Medium | Modern Hindutva

The above is the detailed content of Master Python Coroutines: Create Custom Async Tools for Powerful Concurrent Apps. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1671
14
PHP Tutorial
1276
29
C# Tutorial
1256
24
Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python vs. C  : Exploring Performance and Efficiency Python vs. C : Exploring Performance and Efficiency Apr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Learning Python: Is 2 Hours of Daily Study Sufficient? Learning Python: Is 2 Hours of Daily Study Sufficient? Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python vs. C  : Understanding the Key Differences Python vs. C : Understanding the Key Differences Apr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Which is part of the Python standard library: lists or arrays? Which is part of the Python standard library: lists or arrays? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python for Web Development: Key Applications Python for Web Development: Key Applications Apr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

See all articles